Modern Genomic Tools for Pigeonpea Improvement: Status and Prospects

  • Abhishek BohraEmail author
  • Shalini Pareek
  • Rintu Jha
  • Rachit K. Saxena
  • Indra P. Singh
  • Gaurav Pandey
  • Raj K. Mishra
  • Farindra Singh
  • Mayank Kaashyap
  • Rohit Joshi
  • Rajeev K. Varshney
Part of the Compendium of Plant Genomes book series (CPG)


Pigeonpea owing to its ability to sustain harsh environment and limited input/water requirement remains an excellent remunerative crop in the face of increasing climatic adversities. With nearly 70% share in global pigeonpea production, India is the leading pigeonpea producing country. Since the mid-1900s, constant research efforts directed to improve yield and resistance levels of pigeonpea have resulted in the development and deployment of several commercially accepted cultivars in India, accommodating into diverse agro-climatic zones. However, the crop productivity needs incremental improvements in order to meet the growing nutritional demands, especially in developing countries like India where pigeonpea forms a dominant part of vegetarian diet. Empowering crop improvement strategies with genomic tool kit is imperative to attain the project gains in crop yield. In the context, adoption of next-generation sequencing (NGS) technology has helped establish a wide range of genomic resources to support pigeonpea breeding, and the existing molecular tool kit includes genome-wide genetic markers, transcriptome/genome assemblies, and candidate genes/QTLs for target traits. Similarly, availability of whole mitochondrial genome sequence and derived DNA markers is immensely relevant in order to furthering the understanding of cytoplasmic male sterility (CMS) system and hybrid breeding. This chapter covers the progress of developing modern genomic resources in pigeonpea and highlights their vital role in designing future crop breeding schemes.


Pigeonpea Molecular marker Polymorphism Genetic map Gene Genome QTL Trait 



Authors acknowledge support from Indian Council of Agricultural Research (ICAR), New Delhi, India.


  1. Abraham B, Araya H, Berhe T, Edwards S, Gujja B, Khadka RB (2014) The system of crop intensification: reports from the field on improving agricultural production, food security, and resilience to climate change for multiple crops. Agric Food Sec 3:4CrossRefGoogle Scholar
  2. Ajay BC, Prasad PS, Gowda MB et al (2013) Inheritance of resistance to Bangalore race of Fusarium wilt disease in pigeon pea (Cajanus cajan L.). Aust J Crop Sci 7:1520–1524Google Scholar
  3. Bandillo N, Raghavan C, Muyco PA et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013:585467CrossRefGoogle Scholar
  5. Bohra A, Mallikarjuna N, Saxena KB, Upadhyaya H, Vales I, Varshney RK (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Plant Biol 37:83–98Google Scholar
  6. Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N et al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea. BMC Plant Biol 11:56CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A et al (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bohra A, Saxena RK, Saxena KB, Sameerkumar CV, Varshney RK (2014). Advances in pigeonpea genomics. In: Gupta S, Nadarajan N, Sen Gupta D (Eds) Legumes in the Omic Era, New York, Heidelberg, London, Springer, pp 95–110Google Scholar
  9. Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: A global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539CrossRefPubMedGoogle Scholar
  10. Bohra A, Singh IP, Yadav AK, Pathak A, Soren KR, Chaturvedi SK et al (2015) Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeonpea. Natl Acad Sci Lett 38:13–19CrossRefGoogle Scholar
  11. Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993CrossRefPubMedGoogle Scholar
  12. Chauhan YS (1990). Pigeonpea: optimum agronomic management. In: Nene YL, Hall S D, Sheil,VK (Eds) The pigeonpea, CAB International, Wallingford, U.K., pp 257–278Google Scholar
  13. Daspute A, Fakrudin B (2015) Identification of coupling and repulsion phase DNA marker associated with an allele of a gene conferring host plant resistance to pigeonpea sterility mosaic virus (PPSMV) in pigeonpea (Cajanus cajan L. Millsp.). Plant Pathol J 31(1):33–40CrossRefPubMedPubMedCentralGoogle Scholar
  14. Daspute A, Fakrudin B, Bhairappanavar SB, Kavil SP, Narayana YD, Muniswamy A, Kaumar PU, Krishnaraj AY, Khadi BM (2014) Inheritance of pigeonpea sterility mosaic disease resistance in pigeonpea. Plant Pathol J 30:188–194Google Scholar
  15. Delhaize E, Rathjen TM, Cavanagh CR (2015) The genetics of rhizosheath size in a multiparent mapping population of wheat. J Exp Bot 66:4527–4536CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dhanasekar P, Dhumal KH, Reddy KS (2010) Identification of RAPD marker linked to plant type gene in pigeonpea. Indian J Biotechnol 9:58–63Google Scholar
  17. Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R et al (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V et al (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17CrossRefPubMedPubMedCentralGoogle Scholar
  19. FAOSTAT (2014) FAOSTAT Database. Available online at:
  20. Ganapathy KN, Byregowda M, Venkatesha SC, Rama Chandra R, Gnanesh BN, Girish G (2009) Identification of AFLP markers linked to sterility mosaic disease in pigeonpea Cajanus cajan (L.) Millsp. Int J Integr Biol 7:145–149Google Scholar
  21. Geddam SB, Raje RS, Prabhu KV, Singh NK, Chauhan DA, Jain P, et al (2014) Validation of QTLs for earliness and plant type traits in pigeonpea (Cajanus cajan (L.) Millsp.) Indian JGenet 74(4): 471–477Google Scholar
  22. Gnanesh BN, Ganapathy KN, Ajay BC, Byre Gowda M (2011a) Inheritance of sterility mosaic disease resistance to Bangalore and Patancheru isolates in pigeonpea (Cajanus cajan (L.) Millsp.). Electron J Plant Breed 2:218–223Google Scholar
  23. Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V et al (2011b) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61Google Scholar
  24. Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol 212:135–141CrossRefGoogle Scholar
  25. Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205CrossRefPubMedGoogle Scholar
  26. Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L et al (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288CrossRefPubMedGoogle Scholar
  27. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK et al (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839CrossRefPubMedGoogle Scholar
  28. Jain KC, Reddy MV (1995) Inheritance of resistance to Fusarium wilt in pigeonpea (Cajanus cajan (L) Millsp.). Ind J Genet Plant Breed 55:434–437Google Scholar
  29. Kabuo NO, Dialoke SA, Onuegbu N, Nwosu JA, Peter-Ikechukwu AI, Ogbu IR (2015) Utilization of Tender Pigeonpea (Cajanus cajan (L.) Millsp.) in Nigeria. Food Sci Qual Manag 37:110–115Google Scholar
  30. Kannaiyan J, Nene YL (1981) Influence of wilt at different growth stages on yield loss in pigeonpea. Trop Pest Manag 27:141Google Scholar
  31. Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD et al (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L.) Millsp.) and wild Cajanus relatives. PLoS ONE 7(6): e39563Google Scholar
  32. Khalekar GD, Akhare AA, Gahukar SJ, Singh NK, Kumar M (2014) Identification of simple sequence repeat markers associated with wilt resistance in pigeonpea. J Environ Biol 35(5):955–960PubMedGoogle Scholar
  33. Khera P, Saxena R, Sameerkumar CV, Saxena K, Varshney RK (2015) SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica. doi  10.1007/s10681-015-1504-2
  34. Kotresh H, Fakrudin B, Punnuri S, Rajkumar B, Thudi M, Paramesh H et al (2006) Identifi cation of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan (L.) Millsp.). Euphytica 149:113–120CrossRefGoogle Scholar
  35. Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanaus cajan L.) using Sanger and Second-generation sequencing platforms. Mol Plant 5:1020–1028CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kumar RR, Yadav S, Joshi S, Bhandare PP, Patil VK, Kulkarni PB et al (2014) Identification and validation of expressed sequence tags from pigeonpea (Cajanus cajan L.) root. Int J Plant Genom 2014:651912Google Scholar
  37. Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra SVCR, Kishor Gaikwad K et al (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet 13:84CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC (2008) Effect of waterlogging on carbohydrate metabolism in pigeonpea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci 175:706–716CrossRefGoogle Scholar
  39. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMedGoogle Scholar
  40. McMullen MM, Kresovich S, Villeda HS et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740CrossRefPubMedGoogle Scholar
  41. Mehta R, Srivastava PK (2000) Analysis of seasonality in prices of agricultural commodities. Agric Situat India, September issueGoogle Scholar
  42. Mergeai G, Kimani PM, Mwangombe A, Olubayo F, Smith C, Audi P et al (2001) Survey of pigeonpea production systems, utilisation and marketing in semi-arid lands of Kenya. Biotechnol Agron Soc Environ 5:145–153Google Scholar
  43. Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR, Varshney RK (2012) Whole-genome scanning for mapping determinacy in pigeonpea (Cajanus spp.). Plant Breed 132:472–478Google Scholar
  44. Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S et al (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678CrossRefPubMedPubMedCentralGoogle Scholar
  45. Murugesan S, Murugan E, Nadarajan N (1997) Inheritance of duration leaf colour sterility mosaic disease resistance and growth habit in pigeonpea. Madras Agric J 84:10–12Google Scholar
  46. Nadimpalli BG, Jarret RL, Pathak SC, Kochert G (1992) Phylogenetic relationship of pigeonpea (Cajanus cajan) based on nuclear restriction fragment length polymorphisms. Genome 36:216–223CrossRefGoogle Scholar
  47. Naithani ST (1941) Cytological studies on Indian pulses. Part I: the somatic chromosomes and the pro chromosomes of Cajanus. Proc Natl Acad Sci India Sect B Biol Sci 11:67–73Google Scholar
  48. Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316CrossRefPubMedPubMedCentralGoogle Scholar
  49. Odeny DA, Jayashree B, Ferguson M, Hoisington D, Crouch J, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136CrossRefGoogle Scholar
  50. Odeny DA, Githiri SM, Kimani PM (2009) Inheritance of resistance to Fusarium wilt in pigeonpea (Cajanus cajan (L.) Millsp.). J Animal Plant Sci 2:89–95Google Scholar
  51. Ohri D, Singh SP (2002) Karyotypic and genome size variation in Cajanus cajan (L.) Millsp. (Pigeonpea) and some wild relatives. Genet Resour Crop Evol 49:1–10CrossRefGoogle Scholar
  52. Ongom PO, Adeyanju A, Gobena DJ, Rich P, Ejeta G (2016) Sorghum MAGIC population: structure and potential for genetics research and breeding. Plant and genome conference XXIV, San Diego, CA. January 08–13, 2016, P0767. (
  53. Pande S, Sharma M, Mangla UN, Ghosh R, Sundaresan G (2011) Phytophthora blight of pigeonpea [Cajanus cajan (L.) Millsp.]: an updating review of biology, pathogenicity and disease management. Crop Protect 30:951e957Google Scholar
  54. Patel KA, Acharya S, Prajapati N, Patel JB (2012) Molecular identification of cytoplasmic male sterility based hybrid GTH 1 and its parents in pigeonpea. Indian J Genet 72:94–96Google Scholar
  55. Pazhamala L, Saxena RK, Singh VK, Sameerkumar C et al (2015) Genomics-assisted breeding for boosting crop improvement in pigeon pea (Cajanus cajan). Front Plant Sci 6:50CrossRefPubMedPubMedCentralGoogle Scholar
  56. Priyanka B, Sekhar K, Sunitha T, Reddy VD, Rao KV (2010) Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics 283:273–287CrossRefPubMedGoogle Scholar
  57. Pundir RPS, Singh RB (1986) Inheritance pattern for pod length and ovule number in wide crosses among Cajanus and Atylosia species. Euphytica 35:649–652CrossRefGoogle Scholar
  58. Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ et al (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol 10:45CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ratnaparkhe MB, Gupta VS, VenMurthy MR, Ranjekar PK (1995) Genetic fingerprinting of pigeonpea [Cajanus cajan (L.) Millsp.] and its wild relatives using RAPD markers. Theor Appl Genet 91:893–898CrossRefPubMedGoogle Scholar
  60. Reddy AA (2009) Pulses production technology: status and way forward. Econ Politic Week xliv (52)Google Scholar
  61. Reddy MV, Nene YL (1981) Estimation of yield loss in pigeonpea due to sterility mosaic. In: Proc. Intern. Workshop on Pigeonpea, ICRISAT center, Patancheru, Andra Pradesh, India, pp. 305–312Google Scholar
  62. Reddy MV, Raju TN, Lenne JM (1998) Diseases of pigeonpea. In: Allen DJ, Lenne JM (eds) The pathology of food legumes. CAB International, Cambridge, pp 517–558Google Scholar
  63. Roorkiwal M, Sawargaonkar SL, Chitikineni A et al (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:1–10CrossRefGoogle Scholar
  64. Roy B (1933) Studies in the development of the female gametophyte in some leguminous crop plants of India. Indian J Agric Sci 3:1098Google Scholar
  65. Sameer Kumar CV, Singh IP, Vijaykumar R, Patil SB, Tathineni R et al (2016) Pigeonpea—A unique jewel in rainfed cropping systems. Legume Perspect 11:8–10Google Scholar
  66. Saxena RK, Prathima C, Saxena KB, Hoisington DA, Singh NK, Varshney RK (2010a) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129:142–148Google Scholar
  67. Saxena RK, Saxena K, Varshney RK (2010b) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol Breed 26:371–380Google Scholar
  68. Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter JA et al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461CrossRefPubMedPubMedCentralGoogle Scholar
  69. Saxena RK, von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena KB et al (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568CrossRefPubMedPubMedCentralGoogle Scholar
  70. Saxena RK, Saxena KB, Pazhamala LT, Patel K, Parupalli S, Sameerkumar CV, Varshney RK (2015) Genomics for greater efficiency in pigeonpea hybrid breeding. Front Plant Sci 6:793CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676CrossRefPubMedGoogle Scholar
  72. Sharma OP, Bhosle BB, Kamble KR, Bhede BV, Seeras NR (2011) Management of pigeonpea pod borers with special reference to pod fly (Melanagromyza obtusa). Indian J Agric Sci 81Google Scholar
  73. Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer Science + Business Media, Dordrecht, The Netherlands, pp 115–140CrossRefGoogle Scholar
  74. Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S et al (2011) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112CrossRefPubMedPubMedCentralGoogle Scholar
  75. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P et al (2015) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J. doi: 10.1111/pbi.12470 Google Scholar
  76. Singh IP, Bohra A, Singh F (2016a) An overview of varietal development programme of pigeonpea in India. Legume Perspect 11:37–40Google Scholar
  77. Singh D, Sinha B, Rai VP, Singh MN, Singh DK, Kumar R, Singh AK (2016b) Genetics of Fusarium wilt resistance in pigeonpea (Cajanus cajan) and efficacy of associated SSR markers. Plant Pathol J 32:95–101Google Scholar
  78. Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015a) Evaluation and validation of housekeeping genes as reference for gene expression studies in Pigeonpea (Cajanus cajan) under drought stress conditions. PLoS One 10:e0122847Google Scholar
  79. Sinha P, Saxena RK, Singh VK, Varshney RK (2015b) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071Google Scholar
  80. Sinha P, Saxena KB, Saxena RK, Singh VK, Suryanarayana V, Sameer Kumar V et al (2015c) Association of nad7a gene with cytoplasmic male sterility in pigeonpea. Plant Genome 8:1–12Google Scholar
  81. Tayeh N, Aubert G, Pilet-Nayel M, Lejeune-Hénaut I, Warkentin TD, Burstin J (2015) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037PubMedPubMedCentralGoogle Scholar
  82. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822CrossRefPubMedGoogle Scholar
  83. Touzet P, Meyer EH (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion 19:166–171CrossRefPubMedGoogle Scholar
  84. Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao Y et al (2013) Cytoplasmic male sterility associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 20:485–495CrossRefPubMedPubMedCentralGoogle Scholar
  85. Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S et al (2010) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity 149:113–120Google Scholar
  86. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89CrossRefGoogle Scholar
  87. Varshney RK, Murali Mohan S, Gaur PM, Gangarao NVPR, Pandey MK et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi- arid tropics. Biotechnol Adv S0734-9750 (13)00003-7Google Scholar
  88. van der Maesen L JG (1980). India is the native home of pigeonpea. In: Arends JC, Boelema G, de Groot CT, Leeuwenberg AJM (Eds) Libergratulatorius in honorem H. C.D. de Wit landbouwhogeschool Miscellaneous paper no 19. Veenman H, Zonen BV, Wageningen, Netherlands, pp 257–262Google Scholar
  89. van der Maesen LJG (1990) Pigeonpea: origin, history, evolution and taxonomy. In: Nene YL, Hall SD, Sheila VK (eds) The Pigeonpea. CAB International, Wallingford, pp 44–86Google Scholar
  90. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13:1–366Google Scholar
  91. Zeven AC, Zhukovsky PM (1975) In: Dictionary of cultivated plants and their centres of diversity, Pudoc, Wageningen, the Netherlands, pp 9–26Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abhishek Bohra
    • 1
    Email author
  • Shalini Pareek
    • 1
  • Rintu Jha
    • 1
  • Rachit K. Saxena
    • 2
  • Indra P. Singh
    • 1
  • Gaurav Pandey
    • 1
  • Raj K. Mishra
    • 1
  • Farindra Singh
    • 1
  • Mayank Kaashyap
    • 3
  • Rohit Joshi
    • 4
  • Rajeev K. Varshney
    • 2
  1. 1.Crop Improvement DivisionIndian Institute of Pulses Research (IIPR)KanpurIndia
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  3. 3.School of Applied SciencesHealth Innovations Research Institute, RMIT UniversityMelbourneAustralia
  4. 4.Plant Stress BiologyInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia

Personalised recommendations