Wide Crossing Technology for Pigeonpea Improvement

  • Nalini MallikarjunaEmail author
  • Rachit K. Saxena
  • M. Byre Gowda
  • Rajeev K. Varshney
Part of the Compendium of Plant Genomes book series (CPG)


Pigeonpea (Cajanus cajan Millsp,) has ample genetic and genomic information now. It is endowed with rich germplasm in different gene pools. One of the easiest material to use in those are in the primary gene pool, which are closely related to cultivated pigeonpea. It is observed that species placed beyond the primary gene pool are a rich source of genetic variation. They contribute beneficial traits to pigeonpea such as pest or disease resistance, resistance to abiotic stresses, cytoplasmic male sterile systems (CMS) leading to yield improvement, and some novel traits such as homozygous pigeonpea lines. To effectively utilize the immense variation present in the secondary, tertiary, and quaternary gene pool of pigeonpea, a thorough knowledge of crossability and concerted effort is essential.


Pigeonpea Improvement Quaternary Gene Pool Cultivated Pigeonpea Cytoplasmic Male Sterility System (CMS) Genome Asymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bakshu L, Venkataraju RR (2001) Antimicrobial activity of Rhincosia beddomei. Fitoterpia 72:579–582Google Scholar
  2. Bantilan MCS, Joshi PK (1996) Returns to research and diffusion investments on wilt resistance in pigeonpea. Impact series (No. 1) Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics, p 36Google Scholar
  3. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256(5516):410–411Google Scholar
  4. Bhojwani SS, Razdan M (1996) Plant tissue culture: theory and practice, a revised edition, Stud Plant Sci 5:167–214Google Scholar
  5. Bohra A, Mallikarjuna N, Saxena K, Upadhyaya HD, Vales I, Varshney RK (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Appl Biol 37:83–98Google Scholar
  6. Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504CrossRefPubMedGoogle Scholar
  7. Cherian CA, Mallikarjuna N, Jadhav DR, Saxena KB (2006) Open flower segregants selected from Cajanus platycarpus crosses. J SAT Agric Res 2:1–2. ISSN 0973-3094Google Scholar
  8. Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Towards doubled haploid production in Fabaceae: progress, constraints, and opportunities. Critical Rev Plant Sci 25:139–157CrossRefGoogle Scholar
  9. Drabu S, Chaturvedi S, Sharma M (2011) Analgesic activity of methanolic extract from aerial parts of Rhynchosia capitata DC. Int J Pharm Technol 3:3590–3600Google Scholar
  10. Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059. doi: 10.1093/jxb/ers192 CrossRefPubMedGoogle Scholar
  11. Flagel LE, Chen L, Chaudhary B, Wendel JF (2009) Coordinated and fi ne scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487–490CrossRefPubMedGoogle Scholar
  12. Galili G, Feldman M (1984) Intergenomic suppression of endosperm protein genes in common wheat. Can J Genet Cytol 26:651–656CrossRefGoogle Scholar
  13. Goodman MM (1990) Genetic and germplasm stocks worth conserving. J Hered 81:11–16CrossRefPubMedGoogle Scholar
  14. Hingane AJ, Saxena KB, Patil SB, Sultana R, Srikanth S, Mallikarjuna N, Vijaykumar R, Sameer Kumar CV (2015) Mechanism of water-logging tolerance in pigeonpea. Indian J Genet Pl Br (The) 75(2):208Google Scholar
  15. Hu G, Housron NL, Pathak D, Schmidt L, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jadhav DR, Mallikarjuna N, Sharma HC, Saxena KB (2012) Introgression of Helicoverpa armigera resistance from Cajanus acutifolius—a wild relative from secondary gene pool of pigeonpea (Cajanus cajan). Asian J Agric Sci 4(4):242–248Google Scholar
  17. Kasha KJ, Kao KN (1970) High Frequency haploid production in Barley (Hordeum vulgare L.). Nature 225(5235):874–876Google Scholar
  18. Kaur P, Bhalla JK (1998) Regeneration of haploid plants from microspore culture of pigeonpea (Cajanus cajan L.). Indian J Exp Biol 36:736–738Google Scholar
  19. Kozak K, Galek R, Waheed MT, Sawicka-Sienkiewicz E (2012) Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryo-like structures. Plant Growth Regul 66(2):145–153CrossRefGoogle Scholar
  20. Kumar S, Gupta S, Chandra S, Singh BB (2003) How wide is the genetic base of pulse crops? In: Ali M, Singh BB, Kumar S, Dhar V (Eds) Pulses in new perspectives. Proceedings of the national symposium on crop diversifycation and natural resource management, Indian Institute of Pulses Research, Kanpur, UP, India, pp 211–221Google Scholar
  21. Lanas I, Gallego P, Martin L, Fernandez J, Alonso A, Rosello JE, Blazquez A, Villalobos N, Guerra H (2006) In vitro Culture of Medicago arborea L. Anthers: initial response. Plant Growth Regul 49(1):49–60Google Scholar
  22. Levy AA, Galili G, Feldman M (1988) Polymorphism and genetic control of high molecular weight glutenin subunit in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity 61:63–72CrossRefGoogle Scholar
  23. Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124(1):107–110CrossRefGoogle Scholar
  24. Mallikarjuna N, Saxena KB (2005) A new cytoplasmic male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142(1–2):143–148CrossRefGoogle Scholar
  25. Mallikarjuna N, Sharma HC, Upadhyaya HD (1997) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. SAT eJournal 3(1):4–7Google Scholar
  26. Mallikarjuna N, Jadhav DR, Clarke H, Coyne C, Meulhbauer FJ (2005) Induction of androgenesis as a consequence of wide crossing in chickpea. J SAT Agric Res 1(1):1Google Scholar
  27. Mallikarjuna N, Saxena KB, Jadhav DR (2011a). Cajanus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Springer, Berlin/Heidelberg, vol 10, pp 21–33Google Scholar
  28. Mallikarjuna N, Senthivel S, Jadhav DR, Saxena K, Sharma HC, Upadhyaya HD, Rathore A, Varshney R (2011b) Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea Improvement. Plant Breeding 130(5):507–514Google Scholar
  29. Mallikarjuna N, Jadhav DR, Saxena KB, Srivastava RK (2012) Cytoplasmic male sterile systems in pigeonpea with special reference to A7 CMS. Elect J Plant Breed 3(4):983–986Google Scholar
  30. Mallikarjuna N, Srikanth S, Sameer Kumar CV, Srivastava R, Saxena RK, Varshney RK (2014) In: M. Singh et al. (Eds) Broadening the genetic base of Grain legumes, Springer, India Edition 1, pp 149–159. doi:  10.1007/978-81-322-2023-7_7
  31. Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127(12):2663–2678Google Scholar
  32. Moraes AP, Zanettini MHB, Jacques SMC, Santos EK (2004) Effect of temperature shock on soybean microspore embryogenesis. Braz Arch Biol Technol 47(4):537–544CrossRefGoogle Scholar
  33. Murthy KSR, Emmannuel S (2011) Nutritional and anti-nutritional properties of the unexploited wild legume Rhynchosia bracteata benth. Bangadesh J Sci Ind Res 46:141–146Google Scholar
  34. Nair S, Prasada Rao U, Bennett J, Mohan M (1995) Detection of a highly heterozygous locus in recombinant inbred lines of rice and its possible involvement in heterosis. Theor Appl Genet 91(6):978–986PubMedGoogle Scholar
  35. Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328Google Scholar
  36. Oke DB, Tewe OO, Fetuga BL (1995) The nutrient composition of some cowpea varieties. Nigerian J Anim Prod 22:32–36Google Scholar
  37. Peng J, Korol AB, Fahima T, Rodert MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference and putative quasi-linkage. Genome Res 10:1509–1531CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pumphrey M, Bai J, Laudencia-Chingcuanco D, Gill BS (2009) Non-additive expression of homeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pundir RPS, Singh RB (1985) Crossability relationships among Cajanus, Atylosia and Rhynchosia species and detection of crossing barriers. Euphytica 34:303–308CrossRefGoogle Scholar
  40. Punguluri SK, Janaiah K, Govil JN, Kumar PA, Sharma PC (2007) AFLP finger printing in pigeonpea (Cajanus cajan (L.) Mill sp.) and its wild relatives. Genet Resour Crop Evol 53:423–431Google Scholar
  41. Rapp RA, Udall JA, Wendel JF (2009) genomic expression dominance in allopolyploids. BMC Biol 7:18. doi: 10.1186/1741-7007-18 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Remanandan P (1990) Pigeonpea: genetic resources. In The Pigeonpea (Nene YL, Hall SD, Sheila VK eds) Wallingford, 89–115, Oxon, UK: CAB InternationalGoogle Scholar
  43. Sateesh Kumar P (1985) Crossability, genome relationships and inheritance studies in intergeneric hybrids of pigeonpea. PhD Thesis, University of Hyderabad, Hyderabad, IndiaGoogle Scholar
  44. Saxena KB, Faris DG, Kumar RV (1987) Relationship between seed size and protein content in newly developed high protein lines of pigeonpea. Plant Food Hum Nutr 36:335–340CrossRefGoogle Scholar
  45. Saxena KB, Ariyanagayam RP, Reddy LJ (1992) Genetics of high selfing trait in pigeonpea. Euphytica 59:125–127Google Scholar
  46. Saxena KB, Tikle AN, Kumar RV, Choudhary AK, Bahadur B (2016) Nectivore-aided hybridization and its exploitation for productivity enhancement in pigeonpea. Int J Sci Res Pub 6(8): 321–328Google Scholar
  47. Singh NB, Singh IP, Singh BB (2005) Pigeonpea breeding. Advances in pigeonpea research. Indian Institute of Pulses Research, Kanpur, pp 67–95Google Scholar
  48. Srikanth S, Rao MV, Mallikarjuna N (2013) Interspecific hybridization between Cajanus cajan (L.) Millsp. and C. lanceolatus (WV Fitgz) van der Maesen. Plant Genet Resour 12(2):255–558Google Scholar
  49. Srikanth S, Marri S, Kollipara P, Rao MV, Mallikarjuna N (2017) Protease inhibitors of Cajanus conferring resistance to pod borer of pigeonpea (Cajanus cajan L. Millsp). Electronic J Plant Breed 8(1): 29–37Google Scholar
  50. Srikanth S, Saxena RK, Rao MV, Varshney RK, Mallikarjuna N (2015) Development of a new CMS system in pigeonpea utilizing crosses with Cajanus lanceolatus (WV Fitgz) van der Maesen. Euphytica 204(2):289–302CrossRefGoogle Scholar
  51. Upadhyaya HD, Reddy LJ, Gowda CLL, Reddy KN, Singh S (2006) Development of a mini core subset for enhanced and diversifi ed utilization of pigeonpea germplasm resources. Crop Sci 46:2127–2132Google Scholar
  52. van der Maesen LJG (1980) India is the native home of pigeonpea. In: Arends JC, Boelema G, de Groot CT, Leeuwenberg AJM (Eds) Ibergratulatorius in honorem H.C.D. de Wit landbouwhoge school miscellaneous paper no 19. Veenman H, Zonen BV, Wageningen, pp 257–262Google Scholar
  53. van der Maesen LJG (1986) Cajanus DC and Alylosia W. & A (Leguminosae). Agricultural University Wageningen papers 85-4 (1985). Agricultural University Wageningen, the Netherlands, p 222Google Scholar
  54. Wang J, Tian L, Lee HS, Chen ZJ (2006a) Non-additive regulation of FRI and FLC loci mediates flowering time variation in Arabidiopsis allopolyploids. Genetics 173:965–974CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang J, Tian L, Lee HS et al (2006b) genome wide non-additive gene regulation in Arabidiopsis allotetraploids. Genetics 172:507–517CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wright B (1997) Crop genetic resource policy: the role of ex situ gene banks. Aust J Agric Resour Econ 41:87–115CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nalini Mallikarjuna
    • 1
    • 2
    Email author
  • Rachit K. Saxena
    • 1
  • M. Byre Gowda
    • 3
  • Rajeev K. Varshney
    • 1
  1. 1.International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia
  2. 2.MysoreIndia
  3. 3.All India Co-ordinated Research Project on Pigeonpea, University of Agricultural Sciences, GKVKBengaluruIndia

Personalised recommendations