Digital Image Watermarking Performance Improvement Using Bio-Inspired Algorithms

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 730)

Abstract

Copyrights protection and ownership of multimedia is a vital task nowadays used in a lot of fields such as broadcasting media. Hence digital media watermarking techniques were developed to embed a watermark image into the original media (image or videos). The watermarking techniques aim to improve the robustness of watermarked image against attacks and increase the impeccability of significant regions of the media. This chapter focuses on explaining the rule of using metaheuristic algorithms for optimizing the robustness and impeccability of image watermarking techniques. This will be discussed through two watermarking techniques one used genetic algorithm optimization and the other use cuckoo search optimization approach.

Keywords

Digital watermarking Bio-inspired algorithms Genetic algorithm and cuckoo search optimization 

References

  1. 1.
    Liu, J.-C., Chen, S.-Y.: Fast two-layer image watermarking without referring to the original image and watermark. Image Vis. Comput. 19(14), 1083–1097 (2001)CrossRefGoogle Scholar
  2. 2.
    Liu, R., Tan, T.: An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimedia 4(1), 121–128 (2002)CrossRefGoogle Scholar
  3. 3.
    Nikolaidis, N., Pitas, I.: Robust image watermarking in the spatial domain. Sig. Process. 66(3), 385–403 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Phadikar, A., Maity, S.P., Verma, B.: Region based QIM digital watermarking scheme for image database in DCT domain. Comput. Electr. Eng. 37, 339–355 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Wu, X., Sun, W.: Robust copyright protection scheme for digital images using overlapping DCT and SVD. Appl. Soft Comput. 13(2), 1170–1182 (2013)CrossRefGoogle Scholar
  6. 6.
    Ouhsain, M., Hamza, A.B.: Image watermarking scheme using nonnegative matrix factorization and wavelet transform. Expert Syst. Appl. 36(2), 2123–2129 (2009)CrossRefGoogle Scholar
  7. 7.
    Ganic, E., Eskicioglu, A.M.: Robust DWT-SVD domain image watermarking: embedding data in all frequencies. In: Proceedings of the ACM Multimedia and Security Workshop, pp. 166–174 (2004)Google Scholar
  8. 8.
    Rawat, S., Raman, B.: A blind watermarking algorithm based on fractional fourier transform and visual cryptography. Sig. Process. 92(6), 1480–1491 (2012)CrossRefGoogle Scholar
  9. 9.
    Lu, W., Lu, H., Chung, F.-L.: Feature based robust watermarking using image normalization. Comput. Electr. Eng. 36, 2–18 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Song, C., Sudirman, S., Merabti, M.: A robust region-adaptive dual image watermarking technique. J. Vis. Commun. Image Represent. 23, 549–568 (2012)CrossRefGoogle Scholar
  11. 11.
    Rastegar, S., Namazi, F., Yaghmaie, K., Aliabadian, A.: Hybrid watermarking algorithm based on singular value decomposition and radon transform. Int. J. Electr. Commun. 65, 658–663 (2011)CrossRefGoogle Scholar
  12. 12.
    Run, R.-S., Horng, S.-J., Lai, J.-L., Kao, T.-W., Chen, R.-J.: An improved SVD-based watermarking technique for copyright protection. Expert Syst. Appl. 39, 673–689 (2012)CrossRefGoogle Scholar
  13. 13.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS’95. IEEE (1995)Google Scholar
  14. 14.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010) CrossRefGoogle Scholar
  15. 15.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Italy (1992)Google Scholar
  16. 16.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Volume 200. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  17. 17.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Aryanezhad, M.B., Hemati, M.: A new genetic algorithm for solving nonconvex nonlinear programming problems. Appl. Math. Comput. 199(1), 186–194 (2008)MathSciNetMATHGoogle Scholar
  19. 19.
    Papakostas, G.A., Tsougenis, E.D., Koulouriotis, D.E.: Moment based local image watermarking via genetic optimization. Appl. Math. Comput. 227, 222–236 (2014)MathSciNetMATHGoogle Scholar
  20. 20.
    Vahedi, E., Zoroofi, R.A., Shiva, M.: Toward a new wavelet-based watermarking approach for color images using bio-inspired optimization principles. Digit. Signal Process. 22, 153–162 (2012)CrossRefGoogle Scholar
  21. 21.
    Tsai, H.-H., Jhuang, Y.-J., Lai, Y.-S.: An SVD-based image watermarking in wavelet domain using SVR and PSO. Appl. Soft Comput. 12(8), 2242–2453 (2012)Google Scholar
  22. 22.
    Al-Qaheri, Hameed, Mustafi, Abhijit, Banerjee, Soumya: Digital watermarking using ant colony optimization in fractional Fourier domain. J. Inf. Hiding Multimed. Signal Process. 1(3), 179–189 (2010)Google Scholar
  23. 23.
    Loukhaoukha, K., Chouinard J.-Y., Taieb, M.H.: Optimal image watermarking algorithm based on LWT-SVD via multi-objective ant colony optimization. J. Inf. Hiding Multimed. Signal Process. 2(4), 303–319 (2011)Google Scholar
  24. 24.
    Mishra, A., et al.: Optimized gray-scale image watermarking using DWT–SVD and Firefly algorithm. Expert Syst. Appl. 41(17), 7858–7867 (2014)Google Scholar
  25. 25.
    Dey, N., et al.: Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging. J. Med. Imaging Health Inf. 4(3), 384–394 (2014)Google Scholar
  26. 26.
    Ali, M., Ahn, C.W.: Comments on “Optimized gray-scale image watermarking using DWT-SVD and firefly algorithm”. Expert Syst. Appl. 42(5), 2392–2394 (2015)CrossRefGoogle Scholar
  27. 27.
    Ali, M., et al.: An image watermarking scheme in wavelet domain with optimized compensation of singular value decomposition via artificial bee colony. Inf. Sci. 301, 44–60 (2015)Google Scholar
  28. 28.
    Mohammadi, F.G., Saniee Abadeh, M.: Image steganalysis using a bee colony based feature selection algorithm. Eng. Appl. Artif. Intell. 31, 35–43 (2014)Google Scholar
  29. 29.
    Aslantas, Veysel: A singular-value decomposition-based image watermarking using genetic algorithm. AEU-Int. J. Electr. Commun. 62(5), 386–394 (2008)CrossRefGoogle Scholar
  30. 30.
    Ali, M., Ahn, C.W., Pant, M.: Cuckoo search algorithm for the selection of optimal scaling factors in image watermarking. In: Proceedings of the Third International Conference on Soft Computing for Problem Solving. Springer, India (2014)Google Scholar
  31. 31.
    Bhargava, V., Fateen, S.E.K., Bonilla-Petriciolet, A.: Cuckoo search: a new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilib. 337, 191–200 (2013)CrossRefGoogle Scholar
  32. 32.
    Bulatović, R.R., Ðorđević, S.R., Ðorđević, V.S.: Cuckoo search algorithm: a metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mech. Mach. Theory 61, 1–13 (2013)Google Scholar
  33. 33.
    Yildiz, A.R.: Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 64, 55–61 (2013)CrossRefGoogle Scholar
  34. 34.
    Valian, E., Tavakoli, S., Mohanna, S., Haghi, A.: Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 64, 459–468 (2013)CrossRefGoogle Scholar
  35. 35.
    Moravej, Z., Akhlaghi, A.: A novel approach based on cuckoo search for DG allocation in distribution network. Electr. Power Energy Syst. 44, 672–679 (2013)CrossRefGoogle Scholar
  36. 36.
    Makbol, N.M., Khoo, B.E.: Robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition. Int. J. Electron. Commun. (AEÜ) 65, 658–663 (2012)Google Scholar
  37. 37.
    Wang, B., et al.: Image watermarking using chaotic map and DNA coding. Optik-Int. J. Light Electr. Opt. 126(24), 4846–4851 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Computer and Systems Department, member at Scientific Research Group in Egypt (SRGE)Zagazig UniversityZagazigEgypt

Personalised recommendations