Advertisement

Evaluating Swarm Optimization Algorithms for Segmentation of Liver Images

  • Abdalla Mostafa
  • Essam H. Houssein
  • Mohamed Houseni
  • Aboul Ella Hassanien
  • Hesham Hefny
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 730)

Abstract

There is a remarkable increase in the popularity of swarms inspired algorithms in the last decade. It offers a kind of flexibility and efficiency in their applications in different fields. These algorithms are inspired by the behaviour of various swarms as birds, fish and animals. This chapter presents an overview of some algorithms as grey wolf optimization (GWO), artificial bee colony (ABC) and antlion optimization (ALO). It proposed swarm optimization approaches for liver segmentation based on these algorithms in CT and MRI images. The experimental results of these algorithms show that they are powerful and can get remarkable results when applied to segment liver medical images. It is evidently proved from the experimental results that ALO, GWO and ABC have obtained 94.49%, 94.08% and 93.73%, respectively, in terms of overall accuracy using similarity index measure.

Keywords

Artificial bee colony Grey wolf Antlion and segmentation 

References

  1. 1.
    Alomoush, W., Sheikh Abdullah, S.N., Sahran, S., Hussain, R.Q.: MRI l. J. Theor. Appl. Inf. Technol. 61 (2014)Google Scholar
  2. 2.
    Basturk, B., Karaboga, D.: An Artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA, May 12-14, 2006Google Scholar
  3. 3.
    Cuevas, E., Sencin, F., Zaldivar, D., Prez-Cisneros, M., Sossa, H.: Applied Intelligence (2012). doi: 10.1007/s10489-011-0330-z
  4. 4.
    Duraisamy, S.P., Kayalvizhi, R.: A new multilevel thresholding method using swarm intelligence algorithm for image segmentation. J. Intell. Learn. Syst. Appl. 2, 126–138 (2010)Google Scholar
  5. 5.
    Jagadeesan, R.: An artificial fish swarm optimized fuzzy mri image segmentation approach for improving identification of brain tumour. Int. J. Comput. Sci. Eng. (IJCSE) 5(7) (2013)Google Scholar
  6. 6.
    Jindal, S.: A systematic way for image segmentation based on bacteria foraging optimization technique (Its implementation and analysis for image segmentation). Int. J. Comput. Sci. Inf. Technol. 5(1), 130–133 (2014)Google Scholar
  7. 7.
    Karaboga, D.: An Idea Based On Honey Bee Swarm For Numerical Optimization, Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  8. 8.
    Liang, Y., Yin, Y.: A new multilevel thresholding approach based on the ant colony system and the EM algorithm. Int. J. Innov. Comput. Inf. Control 9(1) (2013)Google Scholar
  9. 9.
    Mirjalili, S.: The ant lion optimizer, advances in engineering software, pp. 80–98 (2015). doi: 10.1016/j.advengsoft.2015.01.010
  10. 10.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  11. 11.
    Mostafaa, A., Fouad, A., Abd Elfattah, M., Hassanien, A.E., Hefny, H., Zhu, S.Y., Schaefer, G.: CT liver segmentation using artificial bee colony optimisation. In: 19th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science, vol. 60, pp. 1622–1630 (2015)Google Scholar
  12. 12.
    Mostafa, A., AbdElfattah, M., Fouad, A., Hassanien, A., Hefny, H.: Wolf local thresholding approach for liver image segmentation in ct images. In: International Afro-European Conference for Industrial Advancement AECIA, Addis Ababa, Ethiopia (2015)Google Scholar
  13. 13.
    Mostafa, A., Abd Elfattah, A., Fouad, A., Hassanien, A., Hefny, H.: Enhanced region growing segmentation for CT liver images. In: The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), Beni Suef, Egypt (2015)Google Scholar
  14. 14.
    Mostafa, A., Abd Elfattah, M., Fouad, A., Hassanien, A., Kim, T.: Region growing segmentation with iterative K-means for CT liver images. In: International Conference on Advanced Information Technology and Sensor Application (AITS), China (2015)Google Scholar
  15. 15.
    Mostafa, A., Fouad, A., Abd Elfattah, M., Ella Hassanien, A., Hefny, H., Zhue, S.Y., Schaeferf, G.: CT liver segmentation using artificial bee colony optimisation. In: 19th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science 60, Singapore, pp. 1622–1630 (2015)Google Scholar
  16. 16.
    Fouad, A.A., Mostafa, A., Ismail, S.G., Abd, E.M., Hassanien, A.: Nature Inspired Optimization Algorithms for CT Liver Segmentation. Medical Imaging in Clinical Applications:- Algorithmic and Computer-Based Approaches (2016). doi: 10.1007/978-3-319-33793-7_19
  17. 17.
    Mostafa, A., Houseni, M., Allam, N., Hassanien, A.E., Hefny, H., Tsai, P.-W.: Antlion Optimization Based Segmentation for MRI Liver Images, International Conference on Genetic and Evolutionary Computing (ICGEC 2016), November 7–9, 2016, Fuzhou City, Fujian Province, China, pp. 265–272 (2016). doi: 10.1007/978-3-319-48490-7.31
  18. 18.
    Sankari, L.: Image segmentation using glowworm swarm optimization for finding initial seed. Int. J. Sci. Res. (IJSR) 3 Google Scholar
  19. 19.
    Sivaramakrishnan, A., Karnan, M.: Medical image segmentation using firefly algorithm and enhanced bee colony optimization. In: International Conference on Information and Image Processing (ICIIP-2014), 316–321. Proceedings of the IEEE International Conference on Control and Automation, pp. 166–170 (2007)Google Scholar
  20. 20.
    Zidan, A., Ghali, N.I., Hassanien, A., Hefny, H.: Level set-based CT liver computer aided diagnosis system. Int. J. Imaging Robot. 9 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abdalla Mostafa
    • 1
  • Essam H. Houssein
    • 2
  • Mohamed Houseni
    • 3
  • Aboul Ella Hassanien
    • 4
  • Hesham Hefny
    • 1
  1. 1.Scientific Research Group in Egypt (SRGE)Institute of Statistical Studies and Research, Cairo UniversityGizaEgypt
  2. 2.Scientific Research Group in Egypt (SRGE), Faculty of Computers and InformationMinia UniversityMiniaEgypt
  3. 3.National Liver Institute, Radiology DepartmentMenofia UniversityMenofiaEgypt
  4. 4.Faculty of Computers and Information, Information Technology DepartmentCairo UniversityGizaEgypt

Personalised recommendations