\({\mathrm {CB_{p}F}}\)-IQA: Using Contrast Band-Pass Filtering as Main Axis of Visual Image Quality Assessment

  • Jesús Jaime Moreno-Escobar
  • Claudia Lizbeth Martínez-González
  • Oswaldo Morales-Matamoros
  • Ricardo Tejeida-Padilla
Part of the Studies in Computational Intelligence book series (SCI, volume 730)


Our proposal is to present a Blind and Reference Image Quality Assessment or CBPF-IQA. Thus, the main proposal of this paper is to propose an Interface, which contains not only a Full-Reference Image Quality Assessment (IQA) but also a No-Reference or Blind IQA applying perceptual concepts by means of Contrast Band-Pass Filtering (CBPF). Then, this proposal consists, in contrast, a degraded input image with the filtered versions of several distances by a CBPF, which computes some of the Human Visual System (HVS) variables. If CBPF-IQA detects only one input, it performs a Blind Image Quality Assessment, on the contrary, if CBPF-IQA detects two inputs, it considers that a Reference Image Quality Assessment will be computed. Thus, we first define a Full-Reference IQA and then a No-Reference IQA, which correlation is important when is contrasted with the psychophysical results performed by several observers. CBPF-IQA weights the Peak Signal-to-Noise Ratio by using an algorithm that estimates some properties of the Human Visual System. Then, we compare \({\mathrm {CB_{p}F}}\)-IQA algorithm not only with the mainstream estimator in IQA and PSNR but also state-of-the-art IQA algorithms, such as Structural SIMilarity (SSIM), Mean Structural SIMilarity (MSSIM), and Visual Information Fidelity (VIF). Our experiments show that the correlation of CBPF-IQA correlated with PSNR is important, but this proposal does not need imperatively the reference image in order to estimate the quality of the recovered image.



This work is supported by National Polytechnic Institute of Mexico (Instituto Politécnico Nacional, México) by means of Project No. SIP-20171179, the Academic Secretary and the Committee of Operation and Promotion of Academic Activities (COFAA) and National Council of Science and Technology of Mexico (CONACyT).

It is important to mention that Sects. 4 and 5 are part of the degree thesis supported by Eduardo García and Yasser Sánchez.


  1. 1.
    Wang, Z., Bovik, A.: Mean squared error: Love it or leave it? a new look at signal fidelity measures. Signal Proces. Mag. IEEE 26(1), 98–117 (2009)Google Scholar
  2. 2.
    Wang, Z., Bovik, A.C.: Modern Image Quality Assessment, 1st edn. Synthesis Lectures on Image, Video, & Multimedia Processing. Morgan & Claypool Publishers (2006)Google Scholar
  3. 3.
    Wu, Q., Li, H., Meng, F., Ngan, K.N., Luo, B., Huang, C., Zeng, B.: Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Trans. Circ. Syst. Video Technol. 26(3), 425–440 (2016)CrossRefGoogle Scholar
  4. 4.
    Li, L., Zhou, Y., Lin, W., Wu, J., Zhang, X., Chen, B.: No-reference quality assessment of deblocked images. Neurocomputing 177, 572–584 (2016). http://www.sciencedirect.com/science/article/pii/S092523121501869X
  5. 5.
    Lu, W., Xu, T., Ren, Y., He, L.: On combining visual perception and color structure based image quality assessment. Neurocomputing 212, 128–134 (2016), Chinese Conference on Computer Vision 2015 (CCCV 2015). http://www.sciencedirect.com/science/article/pii/S092523121630697X
  6. 6.
    Zhang, W., Borji, A., Wang, Z., Callet, P.L., Liu, H.: The application of visual saliency models in objective image quality assessment: A statistical evaluation. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1266–1278 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kamble, V., Bhurchandi, K.: No-reference image quality assessment algorithms: a survey. Optik—Int. J. Light Electron Opt. 126(1112), 1090–1097 (2015). http://www.sciencedirect.com/science/article/pii/S003040261500145X
  8. 8.
    Auli-Llinas, F., Serra-Sagrista, J.: Low complexity JPEG2000 rate control through reverse subband scanning order and coding passes concatenation. IEEE Signal Proces. Lett. 14(4), 251–254 (2007)CrossRefGoogle Scholar
  9. 9.
    Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals, Standards and Practice, ser. Kluwer Academic Publishers (2002). ISBN: 0-7923-7519-XGoogle Scholar
  10. 10.
    Bartrina-Rapesta, J., Auli-Llinas, F., Serra-Sagrista, J., Monteagudo-Pereira, J.: JPEG2000 arbitrary ROI coding through rate-distortion optimization techniques. In: Data Compression Conference, 25-27 2008, pp. 292 –301Google Scholar
  11. 11.
    Mullen, K.: The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359, 381–400 (1985)CrossRefGoogle Scholar
  12. 12.
    Mullen, K.T.: The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359, 381–400 (1985)CrossRefGoogle Scholar
  13. 13.
    Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)CrossRefGoogle Scholar
  14. 14.
    Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Proces. 15(2), 430–444 (2006)Google Scholar
  15. 15.
    Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402 (2003)Google Scholar
  16. 16.
    Chandler, D., Hemami, S.: Vsnr: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Proces. 16(9), 2284–2298 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proces. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Proces. Lett. 9, 81–84 (2002)CrossRefGoogle Scholar
  19. 19.
    Sheikh, R., Bovik, A., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Proces. 14, 2117–2128 (2005)CrossRefGoogle Scholar
  20. 20.
    Damera-Venkata, N., Kite, T., Geisler, W., Evans, B., Bovik, A.: Image quality assessment based on a degradation model. IEEE Trans. Image Proces. 9, 636–650 (2000)CrossRefGoogle Scholar
  21. 21.
    Mitsa, T., Varkur, K.: Evaluation of contrast sensitivity functions for formulation of quality measures incorporated in halftoning algorithms. IEEE Int. Conf. Acoust. Speech Signal Proces. 5, 301–304 (1993)Google Scholar
  22. 22.
    C.U.V.C. Laboratory: MeTriXMuX Visual Quality Assessment Package. Cornell University Visual Communications Laboratory (2010). http://foulard.ece.cornell.edu/gaubatz/metrix_mux/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jesús Jaime Moreno-Escobar
    • 1
  • Claudia Lizbeth Martínez-González
    • 1
  • Oswaldo Morales-Matamoros
    • 1
  • Ricardo Tejeida-Padilla
    • 1
  1. 1.ESIME Zacatenco, Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations