A Distance Function for Comparing Straight-Edge Geometric Figures

  • Apoorva Honnegowda Roopa
  • Shrisha Rao
Part of the Studies in Computational Intelligence book series (SCI, volume 730)


This chapter defines a distance function that measures the dissimilarity between planar geometric figures formed with straight lines. This function can in turn be used in partial matching of different geometric figures. For a given pair of geometric figures that are graphically isomorphic, one function measures the angular dissimilarity and another function measures the edge-length disproportionality. The distance function is then defined as the convex sum of these two functions. The novelty of the presented function is that it satisfies all properties of a distance function and the computation of the same is done by projecting appropriate features to a cartesian plane. To compute the deviation from the angular similarity property, the Euclidean distance between the given angular pairs and the corresponding points on the \(y=x\) line is measured. Further while computing the deviation from the edge-length proportionality property, the best fit line, for the set of edge lengths, which passes through the origin is found, and the Euclidean distance between the given edge-length pairs and the corresponding point on a \(y=mx\) line is calculated. Iterative Proportional Fitting Procedure (IPFP) is used to find this best fit line. We demonstrate the behavior of the defined function for some sample pairs of figures.


Geometric similarity Iterative Proportional Fitting Procedure Euclidean distance 

2010 Mathematics Subject Classification.

65D10 (primary) 51K05 (secondary) 


  1. 1.
    Stephen Stoker, H.: General, organic, and biological chemistry. Cengage Learn. (2009)Google Scholar
  2. 2.
    Bourne, P.E., Gu, J.: Structural bioinformatics, 2 ed., Wiley (2009)Google Scholar
  3. 3.
    Gillespie, R.J., Robinson, E.A.: Models of molecular geometry. Chem. Soc. Rev. 34, 396–407 (2005)Google Scholar
  4. 4.
    Sen, A., Chebolu, V., Rheingold, A.L.: First structurally characterized geometric isomers of an eight-coordinate complex. structural comparison between cis- and trans-diiodobis(2,5,8-trioxanonane)samarium. Inorg. Chem. 26(11), 1821–1823 (1987)CrossRefGoogle Scholar
  5. 5.
    Stashans, A., Chamba, G., Pinto, H.: Electronic structure, chemical bonding, and geometry of pure and Sr-doped CaCO3. J. Comput. Chem. 29(3), 343–349 (2008)CrossRefGoogle Scholar
  6. 6.
    Zaka, B.: Theory and applications of similarity detection techniques, Ph.D. thesis, Institute for Information Systems and Computer Media (IICM), Graz University of Technology, Graz, Austria, 2 2009Google Scholar
  7. 7.
    Donald, S.B.: The perception of similarity. In: Robert, G.C. (ed.) Avian Visual Cognition, September 2001Google Scholar
  8. 8.
    Michael, J.T., Bülthoff, H.H.: Image-based object recognition in man, monkey and machine. Cognition 67(1–2), 1–20 (1998). doi: 10.1016/S0010-0277(98)00026-2 Google Scholar
  9. 9.
    Vermorken, M., Szafarz, A., Pirotte, H.: Sector classification through non-gaussian similarity. Appl. Financ. Econ. 20(11) (2008). doi: 10.1080/09603101003636238
  10. 10.
    Sweeney, C., Kneip, L., Höllerer, T., Turk, M.: Computing similarity transformations from only image correspondences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 3305–3313, June 2015. doi: 10.1109/CVPR.2015.7298951
  11. 11.
    Shiuh-Sheng, Y., Liou, J.-R., Shen, W.-C.: Computational similarity based on chromatic barycenter algorithm. IEEE Trans. Consum. Electron. 42(2), 216–220 (1996)CrossRefGoogle Scholar
  12. 12.
    Komosinski, M., Koczyk, G., Kubiak, M.: On estimating similarity in artificial and real organisms. Theor. Biosci. 120(3–4), 271–286 (2001)CrossRefGoogle Scholar
  13. 13.
    Komosinski, M., Kubiak, M.: Quantitative measure of structural and geometric similarity of 3D morphologies. Complexity 16(6), 40–52 (2011)CrossRefGoogle Scholar
  14. 14.
    Heller, V.: Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 49(3), 293–306 (2011)Google Scholar
  15. 15.
    Pallett, G.: Geometric similarity–some applications in fluid mechanics. Educ. Train. 3(2), 36–37 (1961)CrossRefGoogle Scholar
  16. 16.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Grewal, B.S., Grewal, J.S.: Higher Engineering Mathematics, 40th edn. Khanna Publishers, New Delhi (2007)Google Scholar
  18. 18.
    Wong, D.W.S.: The reliability of using the iterative proportional fitting procedure, 340–348 (1992)Google Scholar
  19. 19.
    Lahr, M., de Mesnard, L.: Biproportional techniques in input-output analysis: table updating and structural analysis. Econ. Syst. Res. 16(2), 115–134 (2004)CrossRefGoogle Scholar
  20. 20.
    Edwards Deming, W., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11(4), 427–444 (1940)Google Scholar
  21. 21.
    Rudin, W.: Principles of Mathematical Analysis. McGrawHill Inc., New York (1976)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.BangaloreIndia

Personalised recommendations