Hybrid Rough Neural Network Model for Signature Recognition

  • Mohamed Elhoseny
  • Amir Nabil
  • Aboul Ella Hassanien
  • Diego Oliva
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 730)

Abstract

This chapter introduces an offline signature recognition technique using rough neural network and rough set. Rough neural network tries to find better recognition performance to classify the input offline signature images. Rough sets have provided an array of tools which turned out to be especially adequate for conceptualization, organization, classification, and analysis of various types of data, when dealing with inexact, uncertain, or vague knowledge. Also, rough sets discover hidden pattern and regularities in application. This new hybrid technique achieves good results, since the short rough neural network algorithm is neglected by the grid features technique, and then the advantages of both techniques are integrated.

Keywords

Offline signature Recognition Neural network 

References

  1. 1.
    Al-Shoshan, A.: Handwritten signature verification using image invariants and dynamic features. In: Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation, pp. 173–176 (2006)Google Scholar
  2. 2.
    Saleh, A.: Signature Identification using Evolutionary Rough Neuron. Ain Shams University, Faculty of computer science and Information (2011)Google Scholar
  3. 3.
    Amudha, V., Venkataramani, B., Manikandan, J.: FPGA implementation of isolated digit recognition system using modified back propagation algorithm. In: Proceedings of (ICED) International Conference Electronic Design, pp. 1–6, Dec. 2008Google Scholar
  4. 4.
    Ashwin, G.K.: Data mining tool for semiconductor manufacturing using rough neuro hybrid approach. In: Proceedings of International Conference on Computer Aided Engineering- CAE-2007, IIT Chennai, pp. 13–15, December 2007Google Scholar
  5. 5.
    Kothari, A., Keskar, A.: Rough set approaches to unsupervised neural network based pattern classifier. Adv. Mach. Learn. Data S.-I. Ao (EDS) Anal. 48, 151–163 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Coetzer, J.: Off-line Signature verification. Ph.D. thesis, University of Stellenbosch (2005)Google Scholar
  7. 7.
    Kisku, D.R., Gupta, P., Sing, J.K.: Offline signature identification by fusion of multiple classifiers using statistical learning theory. Int. J. Secur. Appl. 4(3) (2010)Google Scholar
  8. 8.
    Zhang, D., Wang, Y.: Filtering image impulse noise based on fuzzy rough neural network. J. Comput. Appl., 2336–2338 (2005)Google Scholar
  9. 9.
    Radwan, E.: Ph.D. thesis. Increasing Cellular Neural Networks Template Robustness by New Artificial Intelligence Techniques. Toin University of Yokohama in Japan, pp. 34–35, Sept. 2006Google Scholar
  10. 10.
    Own, H.S., Al-Mayyan, W., Zedan, H.: Biometric-based authentication system using rough set theory. M. Szczuka. (EDS): Rough Sets Curr. Trends. Comput. 6086(2010), 560–569 (2010)Google Scholar
  11. 11.
    Impedovo, S., Pirlo, G.: Verification of handwritten signatures: an overview. In: 14th International Conference on Image Analysis and Processing, 2007. ICIAP 2007, pp. 191–196 (2007)Google Scholar
  12. 12.
    Coetzer, J.: Offline signature verification. Chapt. 2, pp. 20–27, April 2005Google Scholar
  13. 13.
    Kothari, A., Keskar, A., Chalasani, R., Srinath, S.: VNIT, Nagpur, Rough neuron based neural classifier. In: Proceedings of International Conference of Emerging Trends in Engineering and Technology, (ICETET), 2008, pp. 624–628, 16–18, July 2008Google Scholar
  14. 14.
    Batista, L., Rivard, D., Sabourin, R., Granger, E., Maupin, P.: State of the art in off-line signature verification (2008)Google Scholar
  15. 15.
    Madasu, V., Lovell, B.C.: An automatic offline signature and forgery detection system. In: Verma, B., Blumenstein, M., (Ed.), Pattern Recognition Technologies and Applications: Recent Advances, PA: Information Science Reference, pp. 63–89 (2008)Google Scholar
  16. 16.
    Lingras, P.: Rough neural networks. In: Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, pp. 1445–1450 (1996)Google Scholar
  17. 17.
    Metawa, N., Elhoseny, M., Kabir Hassan, M., Hassanien, A.: Loan portfolio optimization using genetic algorithm: a case of credit constraints. In: 12th International Computer Engineering Conference (ICENCO), pp. 59–64. IEEE (2016). doi: 10.1109/ICENCO.2016.7856446
  18. 18.
    Metawa, N., Kabir Hassan, M., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions, Expert Systems with Applications, vol. 80, 1 Sept 2017, pp. 75–82. ISSN 0957-4174. http://dx.doi.org/10.1016/j.eswa.2017.03.021

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Elhoseny
    • 1
    • 3
  • Amir Nabil
    • 1
  • Aboul Ella Hassanien
    • 2
    • 3
  • Diego Oliva
    • 3
    • 4
  1. 1.Faculty of Computers and InformationMansoura UniversityMansouraEgypt
  2. 2.Faculty of Computers and Information, Information Technology DepartmentCairo UniversityGizaEgypt
  3. 3.Scientific Research Group in Egypt (SRGE)CairoEgypt
  4. 4.Departamento de Ciencias ComputacionalesTecnológico de MonterreyJalMexico

Personalised recommendations