Multimodal Biometric Personal Identification and Verification

  • Mohamed Elhoseny
  • Ahmed Elkhateb
  • Ahmed Sahlol
  • Aboul Ella Hassanien
Part of the Studies in Computational Intelligence book series (SCI, volume 730)


Security systems using one identification tool are not ideal. Multisystem security, which using two or more types of security levels like for example using identification password and card, can increase the security of a system, however it is not an ideal security system. Password maybe hacked or forgotten, and Identification card is something we have and could be stolen. This chapter proposes a cascaded multimodal biometric system using fingerprint and iris recognition based on minutiae extraction for fingerprint identification and encoding the log-Gabor filtering for iris recognition. The experiments compare FAR, FRR, and accuracy evaluation metrics for a unimodal biometric system based on either fingerprint or iris and the cascaded multimodal biometric system that sequentially utilizes the fingerprint and iris traits. The proposed system has FAR = 0, FRR = 0.057, and accuracy 99.86%. The results show the superior performance of the proposed multimodal system compared to the unimodal system.


  1. 1.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer- Science + Business Media, LLC (2006)Google Scholar
  2. 2.
    ISO/IEC TR 24722:2007, Information technology biometrics: multimodal and other multibiometric fusion, July 2007Google Scholar
  3. 3.
    Ross A., Govindarajan, R.: Feature level fusion using hand and face biometrics. In: Proceedings of the SPIE Conference Biometric Technology for Human Identification \(II\), pp. 196–204, Mar. 2005Google Scholar
  4. 4.
    Singh, S., Gyaourova, A., Bebis, G., Pavlidis, I.: Infrared and visible image fusion for face recognition. In: SPIE Defense and Security Symposium, pp. 585–596 (2004)Google Scholar
  5. 5.
    Heo, J., Kong, S.G., Abidi, B.R., Abidi, M.A.: Fusion of visual and thermal signatures with eyeglass removal for robust face recognition. In: Proceedings of the Joint IEEE Workshop Object Tracking and Classification beyond the Visible Spectrum, June 2004Google Scholar
  6. 6.
    Son, B., Lee, Y.: Biometric authentication system using reduced Joint feature vector of iris and face. In: Lecture Notes in Computer Science vol. 3546, pp. 261–273 (2005)Google Scholar
  7. 7.
    Ross, A., Jain, A.K.: Fusion techniques in multibiometric systems. In: Hammound, R., Abidi, B., Abidi, M. (eds.) Face Biometrics for Personal Identification. Springer, Berlin, Germany (2007)Google Scholar
  8. 8.
    Lanckriet, G.R.G., Ghaoui, L.EI., Bhattacharyya, C., Jordan, M.I.: J. Machine Learning Res. 3, 552 (2002)Google Scholar
  9. 9.
    Verlinde, P., Cholet, G.: Comparing decision fusion paradigms using k-NN based classifiers, decision trees and logistic regression in a multi-modal identity verification application. In: Proceedings of the International Conference Audio and Video-Based Biometric Person Authentication (AVBPA), pp. 188–193, Washington, DC, Mar. 1999Google Scholar
  10. 10.
    Ross, A., Jain, A.K.: Information fusion in biometrics. Pattern Recogn. Lett. 24(13), 2115–2125 (2003)CrossRefGoogle Scholar
  11. 11.
    Jain, A., Hong, L., Kulkarni, Y.: A multimodal biometric system using fingerprint, face and speech. In: Second International Conference on AVBPA, pp. 182–187, Washington, DC, USA (1999)Google Scholar
  12. 12.
    Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial gummy fingers on fingerprint systems. In: Proceedings of the SPIE, Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677, pp. 275–289, Jan. 2002Google Scholar
  13. 13.
    Kittler, J., Hatef, M., Duin, R.P.W., Mates, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)Google Scholar
  14. 14.
    Wang, F., Yao, X., Han, J.: Improving iris recognition performance via multi-instance fusion at the score level. Chin. Opt. Lett. 6(11), 824–826 (2008)CrossRefGoogle Scholar
  15. 15.
    Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recogn. 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  16. 16.
    Bowyer, K.W., Chang, K.I., Flynn, P.J., Chen, X.: Face recognition using 2-D, 3-D, and infrared: is multimodal better than multisample. Proc. IEEE 94(11), 2000–2012 (2006)CrossRefGoogle Scholar
  17. 17.
    Jain, A.K., Ross, A.: Fingerprint mosaicking. In: Proceedings of the International Conference Acoustic Speech and Signal Processing, vol. 4, pp. 4064–4067 (2002)Google Scholar
  18. 18.
    Yao, Y.-F., Jing, X.-Y., Wong, H.-S.: Face and palmprint feature level fusion for single sample biometrics recognitionion. Neurocomputing 70, 1582–1586 (2007)CrossRefGoogle Scholar
  19. 19.
    Benaliouche, H., Touahria, M.: Comparative study of multimodal biometric recognition by fusion of iris and fingerprint. Sci. World J. 2014, 113 (2014)CrossRefGoogle Scholar
  20. 20.
    Chen, X., Flynn, P.J., Bowyer, K.W.: IR and visible light face recognition. Comput. Vis. Image Underst. 99(3), 332–358 (2005)CrossRefGoogle Scholar
  21. 21.
    Han, J., Bhanu, B.: Gait recognition by combining classifiers based on environmental contexts. In: Lecture Notes in Computer Science, vol. 3546/2005, pp. 113–124 (2005)Google Scholar
  22. 22.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: Image mosaicing for rolled fingerprint construction. In: Proceedings of the International Conference Pattern Recognition, vol. 2, pp. 1651–1653 (1998)Google Scholar
  23. 23.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: a survey. Proc. IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  24. 24.
    Metawa, N., Elhoseny, M., Kabir Hassan, M., Hassanien, A.: Loan portfolio optimization using genetic algorithm: a case of credit constraints. In: 12th International Computer Engineering Conference (ICENCO), pp. 59–64. IEEE (2016). doi: 10.1109/ICENCO.2016.7856446
  25. 25.
    Metawa, N., Hassan, M.K., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions. Expert Syst. Appl. 80, 75–82 (2017). ISSN 0957-4174. doi: 10.1016/j.eswa.2017.03.021
  26. 26.
    Proenca, H., Alexandre, L.A.: UBIRIS iris image database, Dec. 2006.
  27. 27.
    Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE, Biometrics, Vol. 14, No. 1, January 2004Google Scholar
  28. 28.
    Elhoseny, M., Elminir, H., Riad, A., Yuan, X.: A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. J. King Saud Univ.-Comput. Inf. Sci. (2015)Google Scholar
  29. 29.
    Elhoseny, M., Yuan, X., El-Minir, H.K., Riad, A.M.: An energy efficient encryption method for secure dynamic WSN. Secur. Comm. Netw. 9, 2024–2031 (2016)Google Scholar
  30. 30.
    Poh, N., Bengio, S., Korczak, J.: A multi-sample multi-source model for biometric authentication. In: Proceedings of the IEEE Workshop Neural Networks for, Signal Processing, pp. 375–384 (2002)Google Scholar
  31. 31.
    Uludag, U., Ross, A., Jain, A.K.: Biometric template selection and update: a case study in fingerprints. Pattern Recogn. 37(7), 1533–1542 (2004)CrossRefMATHGoogle Scholar
  32. 32.
    Bromba, M.U.A.: Bioidentification frequently asked questions.
  33. 33.
    Daugman, J.: Recognizing persons by their Iris patterns. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics: Personal Identification in a Networked Society, pp. 103–121. Kluwer, Norwell, MA (1999)Google Scholar
  34. 34.
    Chinese Academy of Sciences: Institute of Automation.
  35. 35.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2000: Fingerprint Verification Competition, Das, R., Signature Recognition. Keesing J. Doc. Identity, 24 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Elhoseny
    • 1
    • 4
  • Ahmed Elkhateb
    • 1
  • Ahmed Sahlol
    • 2
    • 4
  • Aboul Ella Hassanien
    • 3
  1. 1.Faculty of Computers and InformationMansoura UniversityMansouraEgypt
  2. 2.Faculty of Specific EducationDamietta UniversityDamiettaEgypt
  3. 3.Faculty of Computers and Information, Information Technology DepartmentCairo UniversityGizaEgypt
  4. 4.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations