Semi-automated Method for the Glaucoma Monitoring

  • Nesma Settouti
  • Mostafa El Habib Daho
  • Mohammed El Amine Bechar
  • Mohamed Amine Lazouni
  • Mohammed Amine Chikh
Part of the Studies in Computational Intelligence book series (SCI, volume 730)


The current trend of computer vision and image processing systems in biomedical field is the application of the Computational Intelligence (CI) approaches, which include the use of tools as machine learning and soft computing. The CI approaches bring a new solution to automatic feature extraction for a particular task. Based on that techniques, we have proposed in this work a semi-automated method for the glaucoma monitoring through retinal images. Glaucoma is a disease caused by neuro-degeneration of the optic nerve leading to blindness. It can be assessed by monitoring Intraocular Pressure (IOP), by the visual field and the aspect of the optic disc (ratio cup/disc). Glaucoma increases the rate of cup/disc (CDR), which affects the loss of peripheral vision. In this work, a segmentation method of cups and discs regions is proposed in a semi-supervised pixel-based classification paradigm to automate the cup/disc ratio calculation for the concrete medical supervision of the glaucoma disease. The idea is to canvas the medical expert for labeling the regions of interest (ROI) (three retinal images) and automate the segmentation by intelligent region growing based on machine learning. A comparative study of semi-supervised and supervised methods is carried out in this proposal, by mono approaches (decision tree and SETRED) and multi-classifiers (Random Forest and co-Forest). Our proposition is evaluated on real images of normal and glaucoma cases. The obtained results are very promising and demonstrate the efficacy and potency of segmentation by the multi-classifier systems in semi-automatic segmentation.


Pixel-based classification Semi-supervised learning Semi-automatic segmentation Fuzzy C-means co-Forest Glaucoma monitoring 



The completion of this research could not have been possible without the participation and the support of LIMOS, CNRS, UMR 6158, 63173, Aubiere, France. Their contributions are sincerely appreciated and gratefully acknowledged. However, we would like to express our deep appreciation and indebtedness to the ophthalmic clinic “CLINIQUE LAZOUNI” for providing reel medical database that greatly assisted our work.


  1. 1.
    Abdel-Razik Youssif, A.H., Ghalwash, A., Abdel-Rahman Ghoneim, A.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008). doi: 10.1109/TMI.2007.900326 CrossRefGoogle Scholar
  2. 2.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012). doi: 10.1109/TPAMI.2012.120 CrossRefGoogle Scholar
  3. 3.
    Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Comput. 9(7), 1545–1588 (1997)CrossRefGoogle Scholar
  4. 4.
    Azmi, R., Norozi, N., Anbiaee, R., Salehi, L., Amirzadi, A.: IMPST: a new interactive self-training approach to segmentation suspicious lesions in breast MRI. J. Med. Signals Sensors 1(2), 138–148 (2011)Google Scholar
  5. 5.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)CrossRefMATHGoogle Scholar
  6. 6.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT’98, New York, NY, USA, pp. 92–100 (1998)Google Scholar
  7. 7.
    Bock, R., Meier, J., Nyul, L.G., Hornegger, J., Michelson, G.: Glaucoma risk index: automated glaucoma detection from color fundus images. Med. Image Anal. 14(3):471–481. doi: 10.1016/ (2010)
  8. 8.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall, New York (1984)MATHGoogle Scholar
  10. 10.
    Burana-Anusorn, C., Kongprawechnon, W., Sintuwong, S., Tungpimolrut, K.: Image processing techniques for glaucoma detection using the cup-to-disc ratio. Thammasat Int. J. Sci. Technol. 18(1) (2013)Google Scholar
  11. 11.
    Chandrika, S., Nirmala, K.: Analysis of CDR detection for glaucoma diagnosis. Int. J. Eng. Res. Appl. (IJERA) NCACCT-19: ISSN: 2248-9622 (2013)Google Scholar
  12. 12.
    Deng, C., Guo, M.: A new co-training-style random forest for computer aided diagnosis. J. Intell. Inf. Syst. 36(3), 253–281. (2011)
  13. 13.
    Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)Google Scholar
  14. 14.
    Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact, well-separated clusters. J. Cybern. 3, 32–57 (1974)Google Scholar
  15. 15.
    Fix Jr., E.: Discriminatory analysis: nonparametric discrimination: consistency properties. Technical Report Project 21-49-004, Report Number 4, USAF School of Aviation Medicine, Randolf Field, Texas (1951)Google Scholar
  16. 16.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1990)MATHGoogle Scholar
  17. 17.
    Ghafar, R., Morris, T., Ritchings, T., Wood, I.: Detection and characterization of the optic disc in glaucoma and diabetic retinopathy. In: Medical Image Understand Annual Conference, London, UK, pp. 23–24, Sept 2004Google Scholar
  18. 18.
    Hatanaka, Y., Noudo, A., Muramatsu, C., Sawada, A., Hara, T., Yamamoto, T., Fujita, H.: Automatic measurement of vertical cup-to-disc ratio on retinal fundus images. In: Proceedings of the Second International Conference on Medical Biometrics, ICMB’10, pp. 64–72. Springer, Berlin, Heidelberg (2010). doi: 10.1007/978-3-642-13923-9_7
  19. 19.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000). doi: 10.1109/42.845178 CrossRefGoogle Scholar
  20. 20.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.R.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011). doi: 10.1109/TMI.2011.2106509 CrossRefGoogle Scholar
  21. 21.
    Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40(3), 1106–1122 (2007). doi: 10.1016/j.patcog.2006.06.010
  22. 22.
    Khalid, N.E.A., Noor, N.M., Ariff, N.M.: Fuzzy c-means (FCM) for optic cup and disc segmentation with morphological operation. Procedia Comput. Sci. 42(0), 255–262. doi: 10.1016/j.procs.2014.11.060. (2014). Medical and Rehabilitation Robotics and Instrumentation (MRRI2013)
  23. 23.
    Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching. IEEE Trans. Med. Imaging 20(11), 1193–1200 (2001). doi: 10.1109/42.963823 CrossRefGoogle Scholar
  24. 24.
    Li, M., Zhou, Z.H.: SETRED: self-training with editing. In: Ho, T.B., Cheung, D.W.L., Liu, H. (eds.) PAKDD. Lecture Notes in Computer Science, vol. 3518, pp. 611–621. Springer (2005)Google Scholar
  25. 25.
    Li, M., Zhou, Z.H.: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. Trans. Syst. Man Cybern. Part A 37(6), 1088–1098 (2007). doi: 10.1109/TSMCA.2007.904745 CrossRefGoogle Scholar
  26. 26.
    Madhusudhan, M., Malay, N., Nirmala, S., Samerendra, D.: Image processing techniques for glaucoma detection. In: Abraham, A., Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 192, pp. 365–373. Springer, Berlin, Heidelberg (2011). doi: 10.1007/978-3-642-22720-2_38
  27. 27.
    Maeireizo, B., Litman, D., Hwa, R.: Co-training for predicting emotions with spoken dialogue data. In: Proceedings of the 42th Annual Meeting of the Association for Computational Linguistics (ACL-2004) (2004)Google Scholar
  28. 28.
    Mendonca, A., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006). doi: 10.1109/TMI.2006.879955 CrossRefGoogle Scholar
  29. 29.
    Mohammad, S., Morris, D., Thacker, N.: Texture analysis for the segmentation of optic disc in retinal images. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4265–4270 (2013). doi: 10.1109/SMC.2013.727
  30. 30.
    Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances. J. Intell. Inf. Syst. 22(1), 89–109 (2004)CrossRefMATHGoogle Scholar
  31. 31.
    Muramatsu, C., Hatanaka, Y., Ishida, K., Sawada, A., Yamamoto, T., Fujita, H.: Preliminary study on differentiation between glaucomatous and non-glaucomatous eyes on stereo fundus images using cup gradient models. In: Proceedings of SPIE 9035:903,533–903,533–6 (2014). doi: 10.1117/12.2043409
  32. 32.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  33. 33.
    Settouti, N., El Habib Daho, M., El Amine Lazouni, M., Chikh, M.: Random forest in semi-supervised learning (co-forest). In: 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), pp. 326–329 (2013). doi: 10.1109/WoSSPA.2013.6602385
  34. 34.
    Sirikulviriya, N., Sinthupinyo, S.: Integration of rules from a random forest. In: International Conference on Information and Electronics Engineering IPCSIT, vol. 6. IACSIT Press, Singapore (2011)Google Scholar
  35. 35.
    Sivaswamy, J., Krishnadas, S.R., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head(ONH) segmentation. In: IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014, 29 Apr–2 May 2014, Beijing, China, pp. 53–56 (2014). doi: 10.1109/ISBI.2014.6867807
  36. 36.
    Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, ACL’95, Stroudsburg, PA, USA, pp. 189–196 (1995). doi: 10.3115/981658.981684
  37. 37.
    Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005). doi: 10.1109/TKDE.2005.186 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nesma Settouti
    • 1
  • Mostafa El Habib Daho
    • 1
  • Mohammed El Amine Bechar
    • 1
  • Mohamed Amine Lazouni
    • 1
  • Mohammed Amine Chikh
    • 1
  1. 1.Biomedical Engineering Laboratory GBMTlemcen UniversityChetouaneAlgeria

Personalised recommendations