Color Spaces Advantages and Disadvantages in Image Color Clustering Segmentation

  • Edgar Chavolla
  • Daniel Zaldivar
  • Erik Cuevas
  • Marco A. Perez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 730)

Abstract

Machine learning has been widely used in image analysis and processing for the purpose of letting the computer recognize specifics aspects like color, shape, textures, size, and position. Such procedures allow to have algorithms capable of identifying objects, find relationships, and perform tracking. The present chapter executes an analysis of the one image attribute that is listed among the basic aspects of an image and the color. The color is chosen due to the importance given by humans to this attribute. Also the color is used main filter criteria in object recognition and tracking. In this section the effect of the color is studied from the point of view of the most popular color spaces available in image processing. It will be tested the effect of the selection of a given color space one of the most common clustering machine learning algorithms. The chosen algorithm is K-means ++, a variation of the popular K-means, which allows a more fair evaluation since it mitigates some of the randomness in the final cluster configuration. Every advantage or weakness will be exposed, so it can be known what color spaces are the right choice depending on the desired objective in the image processing.

References

  1. 1.
    Arthur, D., Vassilvitskii, S.: k-means ++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics pp. 1027–1035 (2007)Google Scholar
  2. 2.
    Arumugadevi, S., Seenivasagam, V.: Color image segmentation using feedforward neural networks with FCM. Int. J. Autom. Comput. 13(5), 491–500 (2016)CrossRefGoogle Scholar
  3. 3.
    Blanco, E., Mazo, M., Bergasa, L.M., Palazuelos, S.: A method to increase class separation in the HS plane for color segmentation applications. In: 2007 IEEE International Symposium on Intelligent Signal Processing, WISP (2007)Google Scholar
  4. 4.
    CIE: Commission internationale de l’Eclairage proceedings, 1931. Cambridge University Press, Cambridge (1932)Google Scholar
  5. 5.
    Finlayson, G., Xu, R.: Illuminant and gamma comprehensive normalisation in logRGB space. Pattern Recogn. Lett. 24(11), 1679–1690 (2003)CrossRefGoogle Scholar
  6. 6.
    Gong, M., Qian, Y., Cheng, L.: Integrated foreground segmentation and boundary matting for live videos. IEEE Trans. Image Process. 24(4), 1356–1370 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hanbury, A., Serra, J.: A 3D-polar coordinate colour representation suitable for image analysis. Pattern Recognition and Image Processing Group Technical Report 77. Vienna, Austria, Vienna University of Technology (2003)Google Scholar
  8. 8.
    Khaled, S., Islam, S., Rabbani, G., Tabassum, M., Gias, A., Kamal, M., Muctadir, H., Shakir, A., Imran, A.: Combinatorial color space models for skin detection in sub-continental human images. In Visual Ibnformatics, First International Visual Informatics Conference, IVIC, pp. 532–542 (2009)Google Scholar
  9. 9.
    Kim, K., Oh, C., Sohn, K.: Non-parametric human segmentation using support vector machine. IEEE Trans. Consum. Electron. 62(2), 150–158 (2016)CrossRefGoogle Scholar
  10. 10.
    Kuremoto, T., Kinoshita, Y., Feng, L., Watanabe, S., Kobayashi, K., Obayashi, M.: A gesture recognition system with retina-V1 model and one-pass dynamic programming. Neurocomputing 116, 291–300 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Wang, L., Yang, Z.: Application of self-adapts to RGB threshold value for robot soccer. In: International Conference on Machine Learning and Cybernetics (ICMLC), vol. 2 (2010)Google Scholar
  12. 12.
    Lloyd., S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)Google Scholar
  13. 13.
    Lucchi, A., et al.: Learning structured models for segmentation of 2-D and 3-D imagery. IEEE Trans. Med. Imaging 34(5), 1096–1110 (2015)CrossRefGoogle Scholar
  14. 14.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  15. 15.
    Malacara, D.: Color Vision and Colorimetry: Theory and Applications. SPIE Press (2011)Google Scholar
  16. 16.
    Murphy, K.: Machine Learning—A probabilistic Perspective. MIT Press, Cambridge Massachusetts (2012)MATHGoogle Scholar
  17. 17.
    Oh, S., Kim, S., Approaching the computational color constancy as a classification problem through deep learning. Pattern Recognit. 61, 405–416 (2017)Google Scholar
  18. 18.
    Pan, C., Park, D.S., Lu, H. et al.: Color image segmentation by fixation-based active learning with ELM. Soft Comput. 16(9), 1569–1584 (2012) Google Scholar
  19. 19.
    Pan, C., Park, D.S., Yang, Y., et al.: Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput. Appl. 21(6), 1217–1227 (2012)CrossRefGoogle Scholar
  20. 20.
    Pratondo, A., Chui, C., Ong, S.: Integrating machine learning with region-based active contour models in medical image segmentation. J. Vis. Commun. Image Represent. (2016)Google Scholar
  21. 21.
    Sang, Q., Lin, Z., Acton, S.: Learning automata for image segmentation. Pattern Recognit. Lett. 74, 46–52 (2015)Google Scholar
  22. 22.
    Sridharan, M., Stone, P.: Structure-based color learning on a mobile robot under changing illumination. Auton. Robots 23(3), 161–182 (2007)CrossRefGoogle Scholar
  23. 23.
    Velho, L., Frery, A., Gomes, J.: Image Processing for Computer Graphics and Vision, 2nd edn. Springer (2009)Google Scholar
  24. 24.
    Yanga, H., Wanga, Y., Wanga, Q., Zhanga, X.: LS-SVM based image segmentation using color and texture information. J. Vis. Commun. Image Represent. 23(7), 1095–1112 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Wang, Q., Yang, H., Bu, J.: Color image segmentation using automatic pixel classification with support vector machine. Neurocomputing 74(18), 3898–3911 (2011)CrossRefMATHGoogle Scholar
  26. 26.
    Wikimedia commons CIELab, SRGB gamut within CIELAB color space isosurface.png. https://commons.wikimedia.org
  27. 27.
    Wikimedia commons, HSL color solid cylinder alpha lowgamma.png. https://commons.wikimedia.org
  28. 28.
    Wikimedia commons, HSV color solid cylinder alpha lowgamma.png, https://commons.wikimedia.org
  29. 29.
    Wikimedia commons, RGB color solid cube.png. https://commons.wikimedia.org

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Edgar Chavolla
    • 1
  • Daniel Zaldivar
    • 1
  • Erik Cuevas
    • 1
  • Marco A. Perez
    • 1
  1. 1.Universidad de Guadalajara, CUCEIGuadalajaraMexico

Personalised recommendations