Advertisement

Null Surface Geometry and Associated Thermodynamics

  • Sumanta ChakrabortyEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The emergent gravity paradigm interprets the gravitational field equations as describing the thermodynamic limit of the underlying statistical mechanics of the microscopic degrees of freedom associated with the spacetime structure. The connection is established by attributing a heat density to the null surfaces. The explicit form of the entropy functional determines the nature of the gravitational theory. We explore the consequences of this paradigm for an arbitrary null surface and highlight the key thermodynamic interpretations of various geometrical quantities. In particular, we show that: three distinct projections of gravitational momentum related to an arbitrary null surface in the spacetime lead to three different equations, all of which have thermodynamic interpretation. The first one reduces to a Navier-Stokes equation for the transverse drift velocity. The second can be written as a thermodynamic identity, while the third one describes the time evolution of the null surface in terms of suitably defined surface and bulk degrees of freedom.

References

  1. 1.
    T. Padmanabhan, Lessons from Classical Gravity about the Quantum Structure of Spacetime. arXiv:1012.4476 [gr-qc]
  2. 2.
    T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces. Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]
  3. 3.
    S. Kolekar, T. Padmanabhan, Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]
  4. 4.
    T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quantum Gravity 19, 5387–5408 (2002). arXiv:gr-qc/0204019 [gr-qc]
  5. 5.
    R.-G. Cai, S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP 0502, 050 (2005). arXiv:hep-th/0501055 [hep-th]
  6. 6.
    M. Akbar, R.-G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635, 7–10 (2006). arXiv:hep-th/0602156 [hep-th]
  7. 7.
    D. Kothawala, S. Sarkar, T. Padmanabhan, Einstein’s equations as a thermodynamic identity: the cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B 652, 338–342 (2007). arXiv:gr-qc/0701002 [gr-qc]
  8. 8.
    A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]
  9. 9.
    D. Kothawala, T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]
  10. 10.
    S. Chakraborty, K. Parattu, T. Padmanabhan, Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity. JHEP 10, 097 (2015). arXiv:1505.05297 [gr-qc]
  11. 11.
    S. Chakraborty, Lanczos-Lovelock gravity from a thermodynamic perspective. JHEP 08, 029 (2015). arXiv:1505.07272 [gr-qc]
  12. 12.
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). arXiv:gr-qc/9504004 [gr-qc]
  13. 13.
    T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]
  14. 14.
    S. Chakraborty, T. Padmanabhan, Evolution of spacetime arises due to the departure from holographic equipartition in all Lanczos-Lovelock theories of gravity. Phys. Rev. D 90(12), 124017 (2014). arXiv:1408.4679 [gr-qc]
  15. 15.
    T. Damour, Surface effects in black hole physics, in Proceedings of the Second Marcel Grossmann Meeting on General Relativity (1982)Google Scholar
  16. 16.
    K. Parattu, S. Chakraborty, B.R. Majhi, T. Padmanabhan, Null Surfaces: Counter-term for the Action Principle and the Characterization of the Gravitational Degrees of Freedom. arXiv:1501.01053 [gr-qc]
  17. 17.
    S.A. Hayward, Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 15, 3147–3162 (1998). arXiv:gr-qc/9710089 [gr-qc]
  18. 18.
    D. Kothawala, The thermodynamic structure of Einstein tensor. Phys. Rev. D 83, 024026 (2011). arXiv:1010.2207 [gr-qc]
  19. 19.
    T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations