Skip to main content

Lanczos-Lovelock Gravity from a Thermodynamic Perspective

  • Chapter
  • First Online:
  • 362 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The deep connection between gravitational dynamics and horizon thermodynamics leads to several intriguing features in general relativity. In this chapter we provide a generalization of several of such results to Lanczos-Lovelock gravity. To our expectation it turns out that most of the results obtained in the context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward but non-trivial manner. First, we provide an alternative and more general derivation of the connection between Noether charge for a specific time evolution vector field and gravitational heat density of the boundary surface. Taking a cue from this, we have introduced naturally defined four-momentum current associated with gravity and matter energy momentum tensor for both Lanczos-Lovelock Lagrangian. Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock gravity by providing a direct generalization of previous results derived in the context of general relativity. Further we have shown that gravitational field equations for arbitrary static and spherically symmetric spacetimes with horizon can be written as a thermodynamic identity in the near horizon limit, transcending general relativity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Relativ. Gravit. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Kothawala, T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]

    Article  ADS  Google Scholar 

  3. A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Chakraborty, K. Parattu, T. Padmanabhan, Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity. JHEP 10, 097 (2015). arXiv:1505.05297 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Kothawala, The thermodynamic structure of Einstein tensor. Phys. Rev. D 83, 024026 (2011). arXiv:1010.2207 [gr-qc]

  6. S.A. Hayward, Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 15, 3147–3162 (1998). arXiv:gr-qc/9710089 [gr-qc]

  7. D. Kastor, S. Ray, J. Traschen, Enthalpy and the mechanics of AdS black holes. Class. Quantum Gravity 26, 195011 (2009). arXiv:0904.2765 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics. Class. Quantum Gravity 28, 235017 (2011). arXiv:1106.6260 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Kubiznak, R.B. Mann, P-V criticality of charged AdS black holes. JHEP 07, 033 (2012). arXiv:1205.0559 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. A.M. Frassino, D. Kubiznak, R.B. Mann, F. Simovic, Multiple reentrant phase transitions and triple points in lovelock thermodynamics. JHEP 09, 080 (2014). arXiv:1406.7015 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. Jacobson, R.C. Myers, Black hole entropy and higher curvature interactions. Phys. Rev. Lett. 70, 3684–3687 (1993). arXiv:hep-th/9305016 [hep-th]

  12. T. Clunan, S.F. Ross, D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quantum Gravity 21, 3447–3458 (2004). arXiv:gr-qc/0402044 [gr-qc]

  13. R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D 48, 3427–3431 (1993). arXiv:gr-qc/9307038 [gr-qc]

  14. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm, Phys. Rev. D 87, 124011 (2013). arXiv:gr-qc/1303.1535 [gr-qc], doi:10.1103/PhysRevD.87.124011

  15. S. Chakraborty, T. Padmanabhan, Geometrical variables with direct thermodynamic significance in Lanczos-Lovelock gravity. Phys. Rev. D 90(8), 084021 (2014). arXiv:1408.4791 [gr-qc]

  16. B. Julia, S. Silva, Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity. Class. Quantum Gravity 15, 2173–2215 (1998). arXiv:gr-qc/9804029 [gr-qc]

  17. T. Regge, C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Carlip, Entropy from conformal field theory at killing horizons, Class. Quantum Gravity 16, 3327–3348 (1999). arXiv:gr-qc/9906126 [gr-qc]

  19. B.R. Majhi, T. Padmanabhan, Noether current, horizon Virasoro algebra and entropy. Phys. Rev. D 85, 084040 (2012). arXiv:1111.1809 [gr-qc]

    Article  ADS  Google Scholar 

  20. B.R. Majhi, S. Chakraborty, Anomalous effective action, Noether current, virasoro algebra and horizon entropy. Eur. Phys. J. C 74, 2867 (2014). arXiv:1311.1324 [gr-qc]

    Article  ADS  Google Scholar 

  21. K. Parattu, S. Chakraborty, B.R. Majhi, T. Padmanabhan, Null surfaces: counter-term for the action principle and the characterization of the gravitational degrees of freedom. arXiv:1501.01053 [gr-qc]

  22. T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Appendices

Appendix A

In this appendix, we shall present the supplementary material for this chapter.

A.1 Detailed Expressions Regarding First Law

Let us start with evaluating the following expression in GNC coordinates introduced in the main text, which leads to

$$\begin{aligned} \frac{1}{2}\Big (E^{u}_{u}&+E^{r}_{r}\Big )=E^{u}_{u}=E^{r}_{r} \nonumber \\&=-\frac{1}{2}\frac{1}{16\pi }\frac{1}{2^{m}}\delta ^{ra_{1}b_{1}\ldots a_{m}b_{m}}_{rc_{1}d_{1}\ldots c_{m}d_{m}}R^{c_{1}d_{1}}_{a_{1}b_{1}}\ldots R^{c_{m}d_{m}}_{a_{m}b_{m}} \nonumber \\&=-\frac{m}{16\pi }\frac{1}{2^{m-1}}\delta ^{ruPA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{ruQC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{uQ}_{uP}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{m(m-1)}{16\pi }\frac{1}{2^{m-1}}\delta ^{ruPA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{ruQC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{QC_{1}}_{uP}R^{uD_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{1}{16\pi }\frac{1}{2^{m+1}}\delta ^{rA_{1}B_{1}\ldots A_{m}B_{m}}_{rC_{1}D_{1}\ldots C_{m}D_{m}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m}D_{m}}_{A_{m}B_{m}} \end{aligned}$$
(6.41)

Then we obtain:

$$\begin{aligned} T^{r}_{r}&=2E^{r}_{r}=-\frac{m}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{uQ}_{uP}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{m(m-1)}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{QC_{1}}_{uP}R^{uD_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{1}{16\pi }\frac{1}{2^{m}}\delta ^{A_{1}B_{1}\ldots A_{m}B_{m}}_{C_{1}D_{1}\ldots C_{m}D_{m}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m}D_{m}}_{A_{m}B_{m}} \end{aligned}$$
(6.42)

Now we have the following expression for components of Riemann tensor as:

$$\begin{aligned} R^{uQ}_{uP}&=-\frac{1}{2}q^{QE}\partial _{u}\partial _{r}q_{PE}-\frac{1}{2}q^{QE}\partial _{P}\beta _{E}-\frac{1}{2}\alpha q^{QE}\partial _{r}q_{PE}-\frac{1}{4}\beta ^{Q}\beta _{P} \nonumber \\&+\frac{1}{4}\left( q^{QE}\partial _{r}q_{PF}\right) \left( q^{FL}\partial _{u}q_{EL}\right) +\frac{1}{2}q^{QE}\beta _{A}\hat{\Gamma }^{A}_{EP} \end{aligned}$$
(6.43a)
$$\begin{aligned} R^{AM}_{CD}&=\hat{R}^{AM}_{CD}-\frac{1}{4}q^{AE}q^{MB}\Big \lbrace \partial _{u}q_{CE}\partial _{r}q_{BD}+\partial _{r}q_{CE}\partial _{u}q_{BD}-\left( C\leftrightarrow D\right) \Big \rbrace \end{aligned}$$
(6.43b)
$$\begin{aligned} R^{uN}_{CD}&=-\frac{1}{2}q^{MN}\partial _{r}\partial _{C}q_{MD}-\frac{1}{4}\beta _{C}q^{MN}\partial _{r}q_{MD}-\frac{1}{2}\left( q^{MN}\partial _{r}q_{CE}\right) \hat{\Gamma } ^{E}_{~MD}-\left( C\leftrightarrow D\right) \end{aligned}$$
(6.43c)
$$\begin{aligned} R^{AB}_{uC}&=q^{BD}\Big [\partial _{u}\hat{\Gamma } ^{A}_{~DC}-\frac{1}{2}q^{AE}\partial _{C}\partial _{u}q_{DE}-\frac{1}{2}\partial _{C}q^{AE}\partial _{u}q_{DE}+\frac{1}{4}\beta ^{A}\partial _{u}q_{CD} \nonumber \\&+\frac{1}{2}q^{AF}\partial _{u}q_{EF}\hat{\Gamma } ^{E}_{~CD}-\frac{1}{4}\beta _{D}q^{AE}\partial _{u}q_{EC}-\frac{1}{2}q^{EF}\partial _{u}q_{FD}\hat{\Gamma } ^{A}_{~CE}\Big ] \end{aligned}$$
(6.43d)

where \(\hat{A}\) denotes an object A constructed solely from the transverse metric \(q_{AB}\). Note that for \(\partial _{u}g_{AB}=0\), we have:

$$\begin{aligned} R^{uQ}_{uP}&=-\frac{1}{2}q^{QE}\partial _{P}\beta _{E}-\frac{1}{2}\alpha q^{QE}\partial _{r}q_{PE}-\frac{1}{4}\beta ^{Q}\beta _{P}+\frac{1}{2}q^{QE}\beta _{A}\hat{\Gamma }^{A}_{EP} \end{aligned}$$
(6.44a)
$$\begin{aligned} R^{AM}_{CD}&=\hat{R}^{AM}_{CD} \end{aligned}$$
(6.44b)
$$\begin{aligned} R^{uN}_{CD}&=-\frac{1}{2}q^{MN}\partial _{r}\partial _{C}q_{MD}-\frac{1}{4}\beta _{C}q^{MN}\partial _{r}q_{MD}-\frac{1}{2}\left( q^{MN}\partial _{r}q_{CE}\right) \hat{\Gamma } ^{E}_{~MD}-\left( C\leftrightarrow D\right) \end{aligned}$$
(6.44c)
$$\begin{aligned} R^{AB}_{uC}&=0 \end{aligned}$$
(6.44d)

Thus we finally arrive at the following expression:

$$\begin{aligned} T^{r}_{r}&=-\frac{m}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}\left( -\frac{1}{2}\alpha q^{QE}\partial _{r}q_{PE}\right) R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{m}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}\Big [-\frac{1}{2}q^{QE}\partial _{u}\partial _{r}q_{PE}-\frac{1}{2}q^{QE}\partial _{P}\beta _{E}-\frac{1}{4}\beta ^{Q}\beta _{P} \nonumber \\&+\frac{1}{4}\left( q^{QE}\partial _{r}q_{PF}\right) \left( q^{FL}\partial _{u}q_{EL}\right) +\frac{1}{2}q^{QE}\beta _{A}\hat{\Gamma }^{A}_{EP}\Big ]R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{m(m-1)}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{QC_{1}}_{uP}R^{uD_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{1}{16\pi }\frac{1}{2^{m}}\delta ^{A_{1}B_{1}\ldots A_{m}B_{m}}_{C_{1}D_{1}\ldots C_{m}D_{m}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m}D_{m}}_{A_{m}B_{m}} \end{aligned}$$
(6.45)

which can be simplified and finally leads to the following expression:

$$\begin{aligned} T^{r}_{r}&=2E^{r}_{r}=\left( E^{u}_{u}+E^{r}_{r}\right) \nonumber \\&=\frac{m}{8}\frac{1}{2^{m-1}}\left( \frac{\alpha }{2\pi }\right) \left( \delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}}\right) \left( q^{QE}\partial _{r}q_{PE}\right) \nonumber \\&-\frac{m}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}\Big [-\frac{1}{2}q^{QE}\partial _{u}\partial _{r}q_{PE}-\frac{1}{2}q^{QE}\partial _{P}\beta _{E}-\frac{1}{4}\beta ^{Q}\beta _{P} \nonumber \\&+\frac{1}{4}\left( q^{QE}\partial _{r}q_{PF}\right) \left( q^{FL}\partial _{u}q_{EL}\right) +\frac{1}{2}q^{QE}\beta _{A}\hat{\Gamma }^{A}_{EP}\Big ]R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{m(m-1)}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{QC_{1}}_{uP}R^{uD_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&-\frac{1}{16\pi }\frac{1}{2^{m}}\delta ^{A_{1}B_{1}\ldots A_{m}B_{m}}_{C_{1}D_{1}\ldots C_{m}D_{m}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m}D_{m}}_{A_{m}B_{m}} \end{aligned}$$
(6.46)

This is the expression used in the text. We also have entropy density to be:

$$\begin{aligned} s&=4\pi m\sqrt{q}\mathcal {L}_{m-1}^{(D-2)} \nonumber \\&=4\pi m \sqrt{q}\left( \frac{1}{16\pi }\frac{1}{2^{m-1}}\delta ^{A_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{C_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \right) \end{aligned}$$
(6.47)

Then under variation along the radial coordinate i.e. along \(k^{a}\) parametrized by \(\lambda \) we have:

$$\begin{aligned} \delta _{\lambda }s&=4\pi m \left( \frac{1}{2}q^{AB}\delta _{\lambda }q_{AB}\right) \sqrt{q}\mathcal {L}_{m-1}^{(D-2)} \nonumber \\&-4\pi m \sqrt{q}\left( \frac{m-1}{16\pi }\frac{1}{2^{m-1}}\delta ^{A_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{C_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{C_{1}A}_{A_{1}B_{1}}q^{D_{1}B}\delta _{\lambda }q_{AB}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \right) \nonumber \\&=-4\pi m \sqrt{q}\delta _{\lambda }q_{AB}\Big (-\frac{1}{2}q^{AB}\mathcal {L}_{m-1}^{(D-2)} \nonumber \\&+\frac{m-1}{16\pi }\frac{1}{2^{m-1}}q^{BD_{1}}\delta ^{A_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{D_{1}C_{1}\ldots C_{m-1}D_{m-1}}R^{AC_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}}\Big ) \nonumber \\&=-4\pi m\sqrt{q}E^{AB}\delta _{\lambda }q_{AB} \end{aligned}$$
(6.48)

where we have:

$$\begin{aligned} E^{A}_{B}&=-\frac{1}{2}\delta ^{A}_{B}\mathcal {L}_{m-1}^{(D-2)}+\frac{m-1}{16\pi }\frac{1}{2^{(m-1)}}\delta ^{A_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{BC_{1}\ldots C_{m-1}D_{m-1}}R^{AC_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&=-\frac{1}{2}\frac{1}{16\pi }\frac{1}{2^{m-1}}\delta ^{AA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{BC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \end{aligned}$$
(6.49)

Hence we obtain:

$$\begin{aligned} \delta _{\lambda }s&=-4\pi m\sqrt{q}\delta _{\lambda }q_{AB}\Big (-\frac{1}{2}\frac{1}{16\pi }\frac{1}{2^{m-1}}\delta ^{AA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{BC_{1}D_{1}\ldots C_{m-1}D_{m-1}} \nonumber \\&\times R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}}\Big ) \nonumber \\&=\frac{m}{8 2^{m-1}}\sqrt{q}\left( \delta ^{AA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{BC_{1}D_{1}\ldots C_{m-1}D_{m-1}} R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}}\right) q^{BC}\delta _{\lambda }q_{AC} \end{aligned}$$
(6.50)

Finally using Eq. (6.50) in Eq. (6.46) we obtain the most general expression for energy as

$$\begin{aligned} \delta _{\lambda }E&=\delta \lambda \int d\Sigma \Big \lbrace \frac{m}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}\Big [-\frac{1}{2}q^{QE}\partial _{u}\partial _{r}q_{PE}-\frac{1}{2}q^{QE}\partial _{P}\beta _{E}-\frac{1}{4}\beta ^{Q}\beta _{P} \nonumber \\&+\frac{1}{4}\left( q^{QE}\partial _{r}q_{PF}\right) \left( q^{FL}\partial _{u}q_{EL}\right) +\frac{1}{2}q^{QE}\beta _{A}\hat{\Gamma }^{A}_{EP}\Big ]R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&+\frac{m(m-1)}{8\pi }\frac{1}{2^{m-1}}\delta ^{PA_{1}B_{1}\ldots A_{m-1}B_{m-1}}_{QC_{1}D_{1}\ldots C_{m-1}D_{m-1}}R^{QC_{1}}_{uP}R^{uD_{1}}_{A_{1}B_{1}}\ldots R^{C_{m-1}D_{m-1}}_{A_{m-1}B_{m-1}} \nonumber \\&+\frac{1}{16\pi }\frac{1}{2^{m}}\delta ^{A_{1}B_{1}\ldots A_{m}B_{m}}_{C_{1}D_{1}\ldots C_{m}D_{m}}R^{C_{1}D_{1}}_{A_{1}B_{1}}\ldots R^{C_{m}D_{m}}_{A_{m}B_{m}}\Big \rbrace \end{aligned}$$
(6.51)

where \(d\Sigma =d^{D-2}x\sqrt{q}\) is the integration measure on the null surface.

A.2 Various Identities Used in the Text Regarding Lanczos-Lovelock Gravity

In this subsection we will collect derivation of important identities used in the text while describing the generalization to Lanczos-Lovelock gravity. We will order the derivations as in text.

1.1 A.2.1 Gravitational Momentum and related derivations for Einstein-Hilbert Action

In this section we provide derivation to various identities used in Sect. 6.4.1. We start by giving the result for variation of Lanczos-Lovelock Lagrangian:

$$\begin{aligned} \delta \left( \sqrt{-g}L\right) =\sqrt{-g}E_{ab}\delta g^{ab} -\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qrc}\delta \Gamma ^{p}_{qr}\right) \end{aligned}$$
(6.52)

The Noether current can be written as:

$$\begin{aligned} J^{a}(q)&=2\mathcal {R}^{a}_{b}q^{b}+2P_{p}^{~qra}\pounds _{q}\Gamma ^{p}_{qr} \nonumber \\&=2E^{a}_{b}q^{b}+2P_{p}^{~qra}\pounds _{q}\Gamma ^{p}_{qr}+Lq^{a} \nonumber \\&=2E^{a}_{b}q^{b}-P^{a}(q) \end{aligned}$$
(6.53)

Then multiplying both sides by the four velocity \(u_{a}\) and taking \(q_{a}=\xi _{a}\) we readily obtain:

$$\begin{aligned} -u_{a}P^{a}(\xi )&=u_{a}J^{a}(\xi )-2E^{ab}\xi _{a}u_{b} \nonumber \\&=D_{\alpha }\left( 2N\chi ^{\alpha }\right) -2NE^{ab}u_{a}u_{b} \end{aligned}$$
(6.54)

Let us now consider the variation of the gravitational momentum corresponding to \(q^{a}\). This has the following expression:

$$\begin{aligned} -\delta \left( \sqrt{-g}P^{a}\right)&=q^{a}\delta \left( \sqrt{-g}L\right) +\delta \left( 2\sqrt{-g}P_{p}^{~qra}\pounds _{q}\Gamma ^{p}_{qr}\right) \nonumber \\&=q^{a}\left( \sqrt{-g}E_{pq}\delta g^{pq}\right) -q^{a}\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qrc}\delta \Gamma ^{p}_{qr} \right) \nonumber \\&+\pounds _{q}\left( 2\sqrt{-g}P_{p}^{~qra}\delta \Gamma ^{p}_{qr} \right) \nonumber \\&+\delta \left( 2\sqrt{-g}P_{p}^{~qra}\right) \pounds _{q}\Gamma ^{p}_{qr} -\pounds _{q}\left( 2\sqrt{-g}P_{p}^{qra}\right) \delta \Gamma ^{p}_{qr} \nonumber \\&=\sqrt{-g}E_{pq}\delta g^{pq}q^{a}+\sqrt{-g}\omega ^{a} +\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qr[a}q^{c]}\delta \Gamma ^{p}_{qr}\right) \end{aligned}$$
(6.55)

where in arriving at the last line we have used the following relation:

$$\begin{aligned} \pounds _{q}Q^{a}-q^{a}\partial _{c}Q^{c}=\partial _{c}\left( q^{[c}Q^{a]}\right) \end{aligned}$$
(6.56)

for the tensor density \(Q^{c}=2\sqrt{-g}P_{p}^{~qrc}\delta \Gamma ^{p}_{qr}\). Also since \(q^{a}\) is a constant vector \(\delta \) and \(\pounds _{q}\) are assumed to commute. Also the object \(\omega ^{a}\) is defined as,

$$\begin{aligned} \sqrt{-g}\omega ^{a}\left( \delta , \pounds _{q}\right) =\delta \left( 2\sqrt{-g}P_{p}^{~qra}\right) \pounds _{q}\Gamma ^{p}_{qr} -\pounds _{q}\left( 2\sqrt{-g}P_{p}^{~qra}\right) \delta \Gamma ^{p}_{qr} \end{aligned}$$
(6.57)

This is the result used in Eq. (6.25). Then we can write the above relation in terms of the Noether current as:

$$\begin{aligned} \delta \left( \sqrt{-g}J^{a}-2\sqrt{-g}E^{a}_{b}q_{b}\right)&=\sqrt{-g}E_{pq}\delta g^{pq}q^{a}+\sqrt{-g}\omega ^{a} \nonumber \\&+\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qr[a}q^{c]}\delta \Gamma ^{p}_{qr}\right) \end{aligned}$$
(6.58)

The above relation can also be written using the Noether potential as:

$$\begin{aligned} \partial _{b}\Bigg \lbrace \delta \left( \sqrt{-g}J^{ab}\right)&-2\sqrt{-g}P_{p}^{~qr[a}q^{b]}\delta \Gamma ^{p}_{qr}\Bigg \rbrace =\sqrt{-g}E_{pq}\delta g^{pq}q^{a}+\sqrt{-g}\omega ^{a} \nonumber \\&+2\delta \left( \sqrt{-g}E^{ab}q_{b}\right) \end{aligned}$$
(6.59)

While for on-shell (i.e., when \(E_{ab}=0\)) we have the following relations:

$$\begin{aligned} -\delta \left( \sqrt{-g}P^{a}\right)&=\sqrt{-g}\omega ^{a} +\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qr[a}q^{c]}\delta \Gamma ^{p}_{qr}\right) \end{aligned}$$
(6.60)
$$\begin{aligned} \partial _{b}\left\{ \delta \left( \sqrt{-g}J^{ab}\right) -2\sqrt{-g}P_{p}^{~qr[a}q^{b]}\delta \Gamma ^{p}_{qr}\right\}&=\sqrt{-g}\omega ^{a} +2\delta \left( \sqrt{-g}E^{ab}q_{b}\right) \end{aligned}$$
(6.61)

Then integrating the second equation over volume \(\mathcal {R}\) with \(d^{D-1}x\sqrt{h}\) as integration measure and \(q^{a}=\zeta ^{a}=Nu^{a}+N^{a}\) we arrive at:

$$\begin{aligned} \delta&\int _{\mathcal {R}}d^{D-1}x\sqrt{h}\left( 2u_{a}E^{ab}\zeta _{b}\right) \nonumber \\&=\int _{\mathcal {R}}d^{D-1}x\partial _{b}\Big \lbrace \delta \left[ \sqrt{h}u_{a}J^{ab}(\zeta )\right] -2\sqrt{h}u_{a}\left( NP_{p}^{~qr[a}u^{b]}+P_{p}^{~qr[a}N^{b]}\right) \delta \Gamma ^{p}_{qr}\Big \rbrace \nonumber \\&-\int _{\mathcal {R}}d^{D-1}x\sqrt{h}u_{a}\omega ^{a}\left( \delta ,\pounds _{q}\right) \nonumber \\&=\int _{\mathcal {R}}d^{D-1}x\partial _{b}\Big \lbrace \delta \left[ \sqrt{h}u_{a}J^{ab}(\zeta )\right] -2\sqrt{h}\left( Nh^{b}_{a}P_{p}^{~qra}+P_{p}^{~qr[a}N^{b]}\right) \delta \Gamma ^{p}_{qr}\Big \rbrace \nonumber \\&-\int _{\mathcal {R}}d^{D-1}x\sqrt{h}u_{a}\omega ^{a}\left( \delta ,\pounds _{q}\right) \end{aligned}$$
(6.62)

Then we want the variation of the Hamiltonian obtained by contracting the momentum along the four velocity \(u_{a}\), such that:

$$\begin{aligned} -\sqrt{h}u_{a}P^{a}(\xi )=t_{a}\sqrt{-g}P^{a}(\xi ) \end{aligned}$$
(6.63)

where the vector \(t_{a}=-u_{a}/N\) in the coordinate system under consideration. Then varying the above expression (noting that variation of \(t_{a}\) vanishes) we obtain

$$\begin{aligned} -\delta \left[ \sqrt{h}u_{a}P^{a}(\xi )\right]&=t_{a}\delta \left[ \sqrt{-g}P^{a}(\xi )\right] \nonumber \\&=-t_{a}\left[ \sqrt{-g}E_{pq}\delta g^{pq}\xi ^{a}+\sqrt{-g}\omega ^{a} +\partial _{c}\left( 2\sqrt{-g}P_{p}^{~qr[a}\xi ^{c]}\delta \Gamma ^{p}_{qr}\right) \right] \nonumber \\&=\sqrt{h}u_{a}\omega ^{a}-\sqrt{-g}E_{pq}\delta g^{pq} +\partial _{c}\left[ 2\sqrt{-g}u_{a}P_{p}^{~qr[a}u^{c]}\delta \Gamma ^{p}_{qr}\right] \nonumber \\&=\sqrt{h}u_{a}\omega ^{a}-\sqrt{-g}E_{pq}\delta g^{pq} +\partial _{c}\left[ 2\sqrt{-g}h^{c}_{a}P_{p}^{~qra}\delta \Gamma ^{p}_{qr}\right] \end{aligned}$$
(6.64)

where in the second line we have used the standard trick in order to get \(u_{a}\) and in the last line we have used the relation:

$$\begin{aligned} u_{a}P_{p}^{~qr[a}u^{c]}=h^{c}_{a}P_{p}^{~qra} \end{aligned}$$
(6.65)

Defining the gravitational Hamiltonian as:

$$\begin{aligned} \mathcal {H}_{grav}=-\int d^{D-1}x \sqrt{h}u_{a}P^{a}(\xi ) \end{aligned}$$
(6.66)

its variation can be obtained readily from Eq. (6.64) as:

$$\begin{aligned} \delta \mathcal {H}_{grav}=\int d^{D-1}x\sqrt{h}u_{a}\omega ^{a}-\int d^{D-1}x \sqrt{-g}E_{pq}\delta g^{pq}+\int d^{D-2}x~2r_{c}\sqrt{q}P_{p}^{~qrc}\delta \Gamma ^{p}_{qr} \end{aligned}$$
(6.67)

where in order to obtain the last term we have used the result that \(r_{c}h^{c}_{a}=r_{a}\) and \(\sqrt{-g}=N\sqrt{h}\). The above results are true for arbitrary variations. Applying it to Lie variation along \(\xi ^{a}\) we arrive at the following form for Eq. (6.64) as:

$$\begin{aligned} -\pounds _{\xi }\left[ \sqrt{h}u_{a}P^{a}(\xi )\right] =2\sqrt{-g}E_{pq}\nabla ^{p}\xi ^{q}+\partial _{c}\left[ 2\sqrt{-g}h^{c}_{a}P_{p}^{~qra}\pounds _{\xi } \Gamma ^{p}_{qr}\right] \end{aligned}$$
(6.68)

In arriving at the above result we have used the relations: \(\pounds _{\xi }g^{ab}=-(\nabla ^{a}\xi ^{b}+\nabla ^{b}\xi ^{a})\) and \(\omega ^{a}(\pounds _{\xi },\pounds _{\xi })=0\). Now using Bianchi identity \(\nabla _{a}E^{ab}=0\) we arrive at:

$$\begin{aligned} -\pounds _{\xi }\left[ \sqrt{h}u_{a}P^{a}(\xi )\right] =\partial _{c}\left[ 2\sqrt{-g}\left( E^{cd}\xi _{d}+h^{c}_{a}P_{p}^{~qra}\pounds _{\xi } \Gamma ^{p}_{qr}\right) \right] \end{aligned}$$
(6.69)

This is the relation used to arrive at the results in the main text.

1.2 A.2.2 Characterizing Null Surfaces

Let us now try to generalize the result for null surfaces to Lovelock gravity with the null vector \(\ell _{a}\) such that \(\ell ^{2}=0\) everywhere. For that purpose, we start with the combination:

$$\begin{aligned} \mathcal {R}_{ab}\ell ^{a}\ell ^{b}&=R_{apqr}P_{b}^{~pqr}\ell ^{a}\ell ^{b} \nonumber \\&=P^{bpqr}\ell _{b}\left( R_{apqr}\ell ^{a}\right) \nonumber \\&=-P^{bpqr}\ell _{b}\left( \nabla _{q}\nabla _{r}\ell _{p}-\nabla _{r}\nabla _{q}\ell _{p}\right) \nonumber \\&=-2P^{bpqr}\ell _{b}\nabla _{q}\nabla _{r}\ell _{p} \nonumber \\&=\nabla _{q}\left( -2P^{bpqr}\ell _{b}\nabla _{r}\ell _{p}\right) -\mathcal {S} \end{aligned}$$
(6.70)

where we have defined, the entropy density as:

$$\begin{aligned} \mathcal {S}=-2P^{bpqr}\nabla _{q}\ell _{b}\nabla _{r}\ell _{p} \end{aligned}$$
(6.71)

The Einstein-Hilbert limit can be obtained easily leading to:

$$\begin{aligned} 16\pi \mathcal {S}&=-\left( g^{bq}g^{pr}-g^{br}g^{pq}\right) \nabla _{q}\ell _{b}\nabla _{r}\ell _{p} \nonumber \\&=\nabla _{a}\ell ^{b}\nabla _{b}\ell ^{a}-\left( \nabla _{i}\ell ^{i}\right) ^{2} \end{aligned}$$
(6.72)

as well as,

$$\begin{aligned} 32\pi P^{bpqr}\ell _{b}\nabla _{r}\ell _{p}&=\left( g^{bq}g^{pr}-g^{br}g^{pq}\right) \ell _{b}\nabla _{r}\ell _{p} \nonumber \\&=\ell ^{q}\nabla _{r}\ell ^{r}-\ell ^{r}\nabla _{r}\ell ^{q} \nonumber \\&=\Theta \ell ^{q} \end{aligned}$$
(6.73)

However in Lanczos-Lovelock gravity, the combination, \(2P^{bpqr}\ell _{b}\nabla _{r}\ell _{p}\) cannot be written as, \(\phi \ell ^{q}\), for arbitrary \(\phi \), since \(2P^{bpqr}\ell _{q}\ell _{b}\nabla _{r}\ell _{p}\ne 0\). Next let us consider the object, \(\ell _{a}J^{a}\left( \ell \right) \), for which we define, \(\ell _{a}=A\nabla _{a}B\). Then in Lanczos-Lovelock gravity, we arrive at:

$$\begin{aligned} \frac{1}{A}\ell _{a}J^{a}\left( \ell \right)&=\nabla _{b}\left[ 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}A\frac{1}{A^{2}} \right] \nonumber \\&=\frac{1}{A}\nabla _{b}\left[ 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A \right] -\frac{1}{A}\left[ 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A \nabla _{b}\ln A \right] \end{aligned}$$
(6.74)

Let us now expand \(\nabla _{c}\ln A\) in canonical null basis, such that we obtain,

$$\begin{aligned} \nabla _{c}\ln A=-\kappa k_{c}+A\ell _{c}+B_{A}e^{A}_{c} \end{aligned}$$
(6.75)

Note that we obtain, \(\ell ^{c}\nabla _{c}\ln A=\kappa \). In a similar fashion, we can expand, \(2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A\) in the following manner,

$$\begin{aligned} 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A=P\ell ^{b}+Qk^{b}+R^{A}e^{b}_{A} \end{aligned}$$
(6.76)

It is evident that \(Q=-2P^{abcd}\ell _{a}\ell _{d}\ell _{b}\nabla _{c}\ln A=0\), due to antisymmetry of \(P^{abcd}\) in the first two indices. Then it turns out that,

$$\begin{aligned} P=-2P^{abcd}\ell _{a}k_{b}\ell _{d}\nabla _{c}\ln A\equiv \mathcal {K} \end{aligned}$$
(6.77)

It is obvious from the Einstein-Hilbert limit, that

$$\begin{aligned} 16\pi \mathcal {K}&=-\left( g^{ac}g^{bd}-g^{ad}g^{bc}\right) \ell _{a}k_{b}\ell _{d}\nabla _{c}\ln A \nonumber \\&=-\left( g^{ac}g^{bd}-g^{ad}g^{bc}\right) \ell _{a}k_{b}\ell _{d}\left( -\kappa k_{c}+B_{A}e^{A}_{c}\right) =\kappa \end{aligned}$$
(6.78)

Also in the expansion for, \(\nabla _{c}\ln A\), we obtain, \(B_{A}\) is completely arbitrary. Then we can use \(B_{A}\) such that the following relation: \(B_{Q}P^{abcd}\ell _{a}\ell _{d}e^{A}_{b}e^{Q}_{c}=\kappa P^{abcd}\ell _{a}k_{c}\ell _{d}e^{A}_{b}\) is satisfied, such that, \(R^{A}\) vanishes. Thus we obtain,

$$\begin{aligned} 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A=\mathcal {K}\ell ^{b} \end{aligned}$$
(6.79)

Again, we get,

$$\begin{aligned} 2P^{abcd}\ell _{a}\ell _{d}\nabla _{c}\ln A \nabla _{b}\ln A=\mathcal {K}\ell ^{b}\nabla _{b}\ln A =\kappa \mathcal {K} \end{aligned}$$
(6.80)

Thus, finally we arrive at the following result:

$$\begin{aligned} \ell _{a}J^{a}\left( \ell \right) =\nabla _{a}\left( \mathcal {K}\ell ^{a}\right) -\kappa \mathcal {K} \end{aligned}$$
(6.81)

Again by considering derivative on the null surface, we obtain,

$$\begin{aligned} D_{a}\left( \mathcal {K}\ell ^{a}\right)&=\left( g^{ab}+\ell ^{a}k^{b}+\ell ^{b}k^{a}\right) \nabla _{a}\left( \mathcal {K}\ell _{b}\right) \nonumber \\&=\nabla _{a}\left( \mathcal {K}\ell ^{a}\right) +k^{b}\ell ^{a}\nabla _{a}\left( \mathcal {K}\ell _{b}\right) \nonumber \\&=\nabla _{a}\left( \mathcal {K}\ell ^{a}\right) -\kappa \mathcal {K}-\ell ^{a}\nabla _{a}\mathcal {K} \end{aligned}$$
(6.82)

Thus the Noether current contraction can also be written as:

$$\begin{aligned} \ell _{a}J^{a}\left( \ell \right) =D_{a}\left( \mathcal {K}\ell ^{a}\right) +\dfrac{d\mathcal {K}}{d\lambda } \end{aligned}$$
(6.83)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Lanczos-Lovelock Gravity from a Thermodynamic Perspective. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_6

Download citation

Publish with us

Policies and ethics