Advertisement

Summary and Outlook

  • Sumanta ChakrabortyEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this last chapter, we shall present a concise summary of the results we have obtained in this thesis as well as future directions of exploration.

References

  1. 1.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Hawking, Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Hawking, Black holes and thermodynamics. Phys. Rev. D 13, 191–197 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Bardeen, B. Carter, S. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). arXiv:gr-qc/9504004 [gr-qc]
  6. 6.
    T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quantum Gravity 19, 5387–5408 (2002). arXiv:gr-qc/0204019 [gr-qc]
  7. 7.
    N. Bodendorfer, T. Thiemann, A. Thurn, New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quantum Gravity 30, 045001 (2013). arXiv:1105.3703 [gr-qc]
  8. 8.
    N. Bodendorfer, T. Thiemann, A. Thurn, New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quantum Gravity 30, 045002 (2013). arXiv:1105.3704 [gr-qc]
  9. 9.
    N. Bodendorfer, T. Thiemann, A. Thurn, New variables for classical and quantum gravity in all dimensions III. quantum theory. Class. Quantum Gravity 30, 045003 (2013). arXiv:1105.3705 [gr-qc]
  10. 10.
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B 270, 186–204 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H.W.J. Bloete, J.L. Cardy, M.P. Nightingale, Conformal invariance, the central charge, and universal finite size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    S. Carlip, Entropy from conformal field theory at killing horizons. Class. Quantum Gravity 16, 3327–3348 (1999). arXiv:gr-qc/9906126 [gr-qc]
  13. 13.
    M. Visser, Thermality of the Hawking flux. JHEP 07, 009 (2015). arXiv:1409.7754 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Dvali, Non-Thermal Corrections to Hawking Radiation Versus the Information Paradox. arXiv:1509.04645 [hep-th]
  15. 15.
    G.t. Hooft, Diagonalizing the Black Hole Information Retrieval Process. arXiv:1509.01695 [gr-qc]

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations