It Is All About Gravity

  • Sumanta ChakrabortyEmail author
Part of the Springer Theses book series (Springer Theses)


The present chapter provides a broad introduction to the basic aspects discussed in this thesis. We present the key features of general relativity and of quantum field theory along with possible discord between them. A brief idea about emergent paradigm of gravity as well as possible avenues of exploration towards quantization of gravity has been discussed.


  1. 1.
    L. D. Landau, E. M. Lifshitz, Course of theoretical physics series in The Classical Theory of Fields, Vol. 2, 4th edn. (Butterworth-Heinemann, 1980)Google Scholar
  2. 2.
    S. Chandrasekhar, The general theory of relativity-why it is probably the most beautiful of all existing theories. J. Astrophy. Astron. 5, 3–11 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Will, The Confrontation between general relativity and experiment. Living Rev. Rel. 9, 3 (2006). arXiv:gr-qc/0510072 [gr-qc]CrossRefzbMATHGoogle Scholar
  4. 4.
    A.D. Rendall, The nature of spacetime singularities, in 100 Years Of Relativity : space-time structure: Einstein and beyond PP. 76–92 (2005). arXiv:gr-qc/0503112 [gr-qc]
  5. 5.
    R.M. Wald, General Relativity, 1st edn. (The University of Chicago Press, 1984)Google Scholar
  6. 6.
    T. Padmanabhan, Conceptual issues in combining general relativity and quantum theory, in The Universe, (Springer, 2000), pp. 239–251Google Scholar
  7. 7.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, 3rd edn. (W. H. Freeman and Company, 1973)Google Scholar
  8. 8.
    S. Hawking, R. Penrose, The Nature Of Space And Time, (Princeton University Press, 2010)Google Scholar
  9. 9.
    A. Ashtekar, A. Barrau, Loop quantum cosmology: from pre-inflationary dynamics to observations. arXiv:1504.07559 [gr-qc]
  10. 10.
    C. Rovelli, F. Vidotto, Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity. Phys. Rev. Lett. 111, 091303 (2013). arXiv:1307.3228 [gr-qc]ADSCrossRefGoogle Scholar
  11. 11.
    R. Gambini, J. Pullin, Loop quantization of the Schwarzschild black hole. Phys.Rev.Lett. 110(21) 211301, (2013). arXiv:1302.5265 [gr-qc]
  12. 12.
    S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Bekenstein, Black holes and the second law. Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737–740 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    W.G. Unruh, R.M. Wald, What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    S.D. Mathur, The Information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). arXiv:0909.1038 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    R.B. Mann, T.G. Steele, Thermodynamics and quantum aspects of black holes in (1+1)-dimensions. Class. Quant. Grav. 9, 475–492 (1992)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Visser, Thermality of the Hawking flux. JHEP 07, 009 (2015). arXiv:1409.7754 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S.K. Modak, L. Ortiz, I. Pena, D. Sudarsky, Non-Paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91(12), 124009 (2015). arXiv:1408.3062 [gr-qc]
  19. 19.
    S. L. Adler, A.C. Millard, Generalized quantum dynamics as prequantum mechanics. Nucl. Phys. B 473(199–244) (1996). arXiv:hep-th/9508076 [hep-th]
  20. 20.
    A. Bassi, G.C. Ghirardi, Dynamical reduction models. Phys. Rept. 379, 257 (2003). arXiv:quant-ph/0302164 [quant-ph]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013). arXiv:1204.4325 [quant-ph]ADSCrossRefGoogle Scholar
  22. 22.
    S.D. Mathur, Tunneling into fuzzball states. Gen. Rel. Grav. 42, 113–118 (2010). arXiv:0805.3716 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    S. Chakraborty, S. Singh, T. Padmanabhan, A quantum peek inside the black hole event horizon. JHEP 1506, 192 (2015). arXiv:1503.01774 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Singh, S. Chakraborty, Black hole kinematics: The âinâ- vacuum energy density and flux for different observers. Phys.Rev. D 90(2), 024011 (2014). arXiv:1404.0684 [gr-qc]
  25. 25.
    C.M. DeWitt, D. Rickles, The Role Of Gravitation In Physics: Report From The 1957 Chapel Hill Conference, vol. 5. epubli, 2011Google Scholar
  26. 26.
    M. Albers, C. Kiefer, M. Reginatto, Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008). arXiv:0802.1978 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Carlip, Is quantum gravity necessary? Class. Quant. Grav. 25, 154010 (2008). arXiv:0803.3456 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure. Nucl.Phys. B 62(444–460) (1973)Google Scholar
  29. 29.
    G. ’t Hooft, M. Veltman, One loop divergencies in the theory of gravitation. Ann. Poincare Phys.Theor. A 20(69–94) (1974)Google Scholar
  30. 30.
    S. Deser, P. van Nieuwenhuizen, One loop divergences of quantized Einstein-Maxwell fields. Phys. Rev. D 10, 401 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system. Phys. Rev. D 10, 411 (1974)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.H. Goroff, A. Sagnotti, The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266(3), 709–736 (1986)Google Scholar
  33. 33.
    S. de Haro, D. Dieks, E. Verlinde et al., Forty years of string theory reflecting on the foundations. Found. Phys. 43(1), 1–7 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    C. Rovelli, L. Smolin, Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995)Google Scholar
  35. 35.
    D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University Press, 2012)Google Scholar
  36. 36.
    G. Esposito, A. Y. Kamenshchik, G. Pollifrone, Euclidean Quantum Gravity On Manifolds With Boundary, vol. 85. (Springer Science & Business Media, 1997)Google Scholar
  37. 37.
    R. D. Sorkin, Causal sets: Discrete gravity in Lectures on quantum gravity, 305–327. Springer, 2005Google Scholar
  38. 38.
    J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Quantum gravity via causal dynamical triangulations. arXiv:1302.2173 [hep-th]
  39. 39.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)Google Scholar
  40. 40.
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974)Google Scholar
  41. 41.
    J.M. Bardeen, B. Carter, S. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)Google Scholar
  42. 42.
    S. Hawking, Black Holes and Thermodynamics. Phys. Rev. D 13, 191–197 (1976)Google Scholar
  43. 43.
    R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]
  44. 44.
    T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys.Rept. 406(49–125) (2005). arXiv:gr-qc/0311036 [gr-qc]
  45. 45.
    G.T. Horowitz, Quantum states of black holes. arXiv:gr-qc/9704072 [gr-qc]
  46. 46.
    C. Rovelli, Loop quantum gravity: the first twenty five years. Class. Quant. Grav. 28, 153002 (2011). arXiv:1012.4707 [gr-qc]ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation. Gen. Relativ. Gravit. 32(2), 365–367 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys.-Dokl. 12, 1040–1041 (1968)ADSGoogle Scholar
  49. 49.
    T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]ADSCrossRefGoogle Scholar
  50. 50.
    T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class.Quant.Grav. 19(5387–5408) (2002). arXiv:gr-qc/0204019 [gr-qc]
  51. 51.
    R.-G. Cai, S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP 0502, 050 (2005). arXiv:hep-th/0501055 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Akbar and R.-G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635(7–10) (2006). arXiv:hep-th/0602156 [hep-th]
  54. 54.
    T. Padmanabhan, Dark energy: mystery of the millennium. AIP Conf. Proc. 861(179–196) (2006). arXiv:astro-ph/0603114 [astro-ph]. [,179(2006)]
  55. 55.
    D. Kothawala, T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]ADSCrossRefGoogle Scholar
  56. 56.
    T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    T. Padmanabhan, Dark energy and gravity. Gen.Rel.Grav. 40(529–564) (2008). arXiv:0705.2533 [gr-qc]
  58. 58.
    T. Padmanabhan, Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25(1129–1136) (2010). arXiv:0912.3165 [gr-qc]
  59. 59.
    T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity. Phys. Rev. D 81, 124040 (2010). arXiv:1003.5665 [gr-qc]ADSCrossRefGoogle Scholar
  60. 60.
    T. Padmanabhan, Holographic gravity and the surface term in the Einstein-Hilbert action. Braz.J.Phys. 35(362–372) (2005). arXiv:gr-qc/0412068 [gr-qc]
  61. 61.
    A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120 ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    S. Kolekar, T. Padmanabhan, Holography in action. Phys. Rev. D 82, 024036 (2010). arXiv:1005.0619 [gr-qc]ADSCrossRefGoogle Scholar
  63. 63.
    T. Damour, Surface effects in black hole physics in Proceedings of the Second Marcel Grossmann Meeting on General Relativity (1982)Google Scholar
  64. 64.
    K.S. Thorne, R.H. Price D.A. MacDonald, Black Holes: The Membrane Paradigm. (Yale University Press, 1986)Google Scholar
  65. 65.
    T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces. Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]ADSCrossRefGoogle Scholar
  66. 66.
    S. Kolekar, T. Padmanabhan, Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]ADSCrossRefGoogle Scholar
  67. 67.
    S. Kolekar, D. Kothawala, T. Padmanabhan, Two aspects of black hole entropy in Lanczos-Lovelock models of gravity. Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973 [gr-qc]ADSCrossRefGoogle Scholar
  68. 68.
    G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)ADSCrossRefGoogle Scholar
  69. 69.
    K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87124011, (Jun, 2013). arXiv:gr-qc/1303.1535 [gr-qc], doi: 10.1103/PhysRevD.87.124011
  70. 70.
    T. Padmanabhan, H. Padmanabhan, CosMIn: the solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013). arXiv:1302.3226 [astro-ph.CO]ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    T. Padmanabhan, H. Padmanabhan, Cosmological Constant from the Emergent Gravity Perspective. Int. J. Mod. Phys. D 23(6), 1430011 (2014). arXiv:1404.2284 [gr-qc]
  72. 72.
    T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    L.J. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys. A 10(145–166), (1995). arXiv:gr-qc/9403008 [gr-qc]

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations