Skip to main content

Manipulating Andreev and Majorana Resonances in Nanowires

  • Chapter
  • First Online:
Numerical Methods for Time-Resolved Quantum Nanoelectronics

Part of the book series: Springer Theses ((Springer Theses))

  • 569 Accesses

Abstract

In Chap. 6 we studied the effect of a voltage pulse on a Josephson junction, and saw several interesting effects due principally to the unique role that the Andreev bound states play in superconducting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This difference was extensively studied in Ref. [2].

  2. 2.

    We have dropped the spin index as the transport is spin independent.

  3. 3.

    We have dropped the spin index as the transport is spin independent.

  4. 4.

    So called because there is an Andreev reflection involved.

References

  1. V. Mourik et al., Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336(6084), 1003–1007 (2012)

    Google Scholar 

  2. B. Gaury, Emerging concepts in time-resolved quantum nanoelectronics, PhD thesis, UniversitT de Grenoble, Oct 2014

    Google Scholar 

  3. C.W.J. Beenakker, Random-matrix theory of quantum transport. Rev. Mod. Phys. 69(3), 731–808 (1997)

    Google Scholar 

  4. C.J. Lambert, Generalized Landauer formulae for quasi-particle transport in disordered superconductors. J. Phys. Condens. Matter 3(34), 6579–6587 (1991)

    Google Scholar 

  5. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25(7), 4515–4532 (1982)

    Google Scholar 

  6. S. Mi et al., Proposal for the detection and braiding of Majorana fermions in a quantum spin hall insulator. Phys. Rev. B 87(24), 241405 (2013)

    Google Scholar 

  7. Y.V. Nazarov, Y.M. Blanter, Quantum transport: introduction to nanoscience (Cambridge University Press, Cambridge, UK ; New York, 2009)

    Google Scholar 

  8. H.O.H. Churchill et al., Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87(24), 241401 (2013)

    Google Scholar 

  9. A. Das et al., Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat Phys 8(12), 887–895 (2012)

    Google Scholar 

  10. M.T. Deng et al., Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. Nano Lett. 12(12), 6414–6419 (2012)

    Google Scholar 

  11. M.T. Deng et al., Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device. Sci. Rep. 4, 7261 (2014)

    Google Scholar 

  12. L.P. Rokhinson, X. Liu, J.K. Furdyna, The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat Phys 8(11), 795–799 (2012)

    Google Scholar 

  13. A.D.K. Finck et al., Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110(12), 126406 (2013)

    Google Scholar 

  14. C.W.J. Beenakker, Search for Majorana fermions in superconductors. Ann. Rev. Condens. Matter Phys. 4(1), 113–136 (2013). arXiv: 1112.1950

  15. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75(7), 076501 (2012)

    Google Scholar 

  16. C.W.J. Beenakker, Random-matrix theory of Majorana fermions and topological superconductors. Rev. Mod. Phys. 87(3), 1037–1066 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Leijnse, K. Flensberg, Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 27(12), 124003 (2012)

    Google Scholar 

  18. T.D. Stanescu, S. Tewari, Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys. Condens. Matter 25(23), 233201 (2013)

    Google Scholar 

  19. S.D. Sarma, M. Freedman, C. Nayak, Majorana zero modes and topological quantum computation. NPJ Quantum Information 1 (Oct. 2015), p. 15001

    Google Scholar 

  20. E. Majorana, Teoria simmetrica dell’elettrone e del positrone. Nuovo Cim 14(4), 171–184 (1937)

    Google Scholar 

  21. G.E. Volovik, Fermion zero modes on vortices in chiral superconductors. J. Exp. Theor. Phys. Lett. 70(9), 609–614 (1999)

    Google Scholar 

  22. T. Senthil, M.P.A. Fisher, Quasiparticle localization in superconductors with spinorbit scattering. Phys. Rev. B 61(14), 9690–9698 (2000)

    Google Scholar 

  23. N. Read, D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61(15), 10267–10297 (2000)

    Google Scholar 

  24. A.Y. Kitaev. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44(10S), 131 (2001)

    Google Scholar 

  25. A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Google Scholar 

  26. C. Nayak et al., Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083–1159 (2008)

    Google Scholar 

  27. G. Moore, N. Read, Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360(2), 362–396 (1991)

    Google Scholar 

  28. S.D. Sarma, M. Freedman, C. Nayak. Topologically protected qubits from a possible Non-Abelian fractional quantum hall state. Phys. Rev. Lett. 94(16), 166802 (2005)

    Google Scholar 

  29. Y. Oreg, G. Refael, F. von Oppen, Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105(17), 177002 (2010)

    Google Scholar 

  30. J. Alicea, Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81(12), 125318 (2010)

    Google Scholar 

  31. R.M. Lutchyn, J.D. Sau, S.D. Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105(7), 077001 (2010)

    Google Scholar 

  32. J.D. Sau, et al., Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104(4), 040502 (2010)

    Google Scholar 

  33. C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100(9), 096407 (2008)

    Google Scholar 

  34. T.M. Klapwijk, Proximity effect from an Andreev perspective. J. Supercond. 17(5), 593–611 (2004)

    Google Scholar 

  35. K.T. Law, P.A. Lee, T.K. Ng, Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103(23), 237001 (2009)

    Google Scholar 

  36. K. Flensberg, Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82(18), 180516 (2010)

    Google Scholar 

  37. J.D. Sau et al., Phys. Rev. B 82(21), 214509 (2010)

    Google Scholar 

  38. W. Chang et al., Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 110(21), 217005 (2013)

    Google Scholar 

  39. M. Cheng et al. Interplay between Kondo and Majorana interactions in quantum dots. Phys. Rev. X 4(3), 031051 (2014)

    Google Scholar 

  40. E.J.H. Lee et al., Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109(18), 186802 (2012)

    Google Scholar 

  41. Rok \(\check{Z}\)itko et al., Shiba states and zero-bias anomalies in the hybrid normal-superconductor Anderson model. Phys. Rev. B 91(4), 045441 (2015)

    Google Scholar 

  42. G. Kells, D. Meidan, P.W. Brouwer, Low-energy subgap states in multichannel \(p\)-wave superconducting wires. Phys. Rev. B 85(6), 060507 (2012)

    Article  ADS  Google Scholar 

  43. J. Liu et al., Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109(26), 267002 (2012)

    Google Scholar 

  44. R.M. Lutchyn, T.D. Stanescu, S.D. Sarma, Search for Majorana fermions in multiband semiconducting nanowires. Phys. Rev. Lett. 106(12), 127001 (2011)

    Google Scholar 

  45. D.I. Pikulin et al., A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire. New J. Phys. 14(12), 125011 (2012)

    Article  ADS  Google Scholar 

  46. G. Kells, D. Meidan, P.W. Brouwer, Near-zero-energy end states in topologically trivial spinorbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86(10), 100503 (2012)

    Google Scholar 

  47. M.-T. Rieder et al., Endstates in multichannel spinless \(p\)-wave superconducting wires. Phys. Rev. B 86(12), 125423 (2012)

    Article  ADS  Google Scholar 

  48. T.D. Stanescu, T. Sumanta, Nonlocality of zero-bias anomalies in the topologically trivial phase of Majorana wires. Phys. Rev. B 89(22), 220507 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Weston .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weston, J. (2017). Manipulating Andreev and Majorana Resonances in Nanowires. In: Numerical Methods for Time-Resolved Quantum Nanoelectronics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63691-7_7

Download citation

Publish with us

Policies and ethics