Advertisement

Multi-parties Quantum Secure Direct Communication with Authentication

  • Ahmed Farouk
  • O. Tarawneh
  • Mohamed Elhoseny
  • J. Batle
  • Mosayeb Naseri
  • Aboul Ella Hassanien
  • M. Abedl-Aty
Chapter
Part of the Studies in Big Data book series (SBD, volume 33)

Abstract

In this chapter, a generalized architecture of quantum secure direct communication for N disjoint users with partial and full cooperation of quantum server is proposed. So, \( N - 1 \) disjointed users \( u_{1},\, u_{2},\, \ldots,\, u_{N - 1} \) can transmit a secret message of classical bits to a remote user \( u_{N} \) by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and users validated by \( EPR \) entangled pair and \( CNOT \) gate. Afterward, the remaining \( EPR \) will be intended for generating shared \( GHZ \) states which used for directly transmitting the secret message. The partial cooperation process involved that \( N - 1 \) users can transmit a secret message directly to a remote user \( u_{N} \) through quantum channel. Furthermore, \( N - 1 \) users and a remote user \( u_{N} \) can communicate without an established quantum channel among them by full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker can’t gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among \( N \) users is ensured as the attacker introducing an error probability irrespective of the sequence of measurement.

Keywords

Quantum key distribution Quantum identity authentication Quantum communication Entanglement 

References

  1. 1.
    Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014). doi: 10.1016/j.tcs.2014.05.025 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Zeng, G.H.: Quantum Cryptology. Science Press (2006)Google Scholar
  4. 4.
    Van Assche, G.: Quantum Cryptography and Secret-key Distillation. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Sharbaf, M.S.: Quantum cryptography: a new generation of information technology security system. In: Sixth International Conference on Information Technology: New Generations, ITNG’09, pp. 1644–1648. IEEE (2009)Google Scholar
  6. 6.
    Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). doi: 10.1038/299802a0 CrossRefMATHGoogle Scholar
  7. 7.
    Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi: 10.1103/physrevlett.70.1895 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Stinson, D.: Cryptography. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  9. 9.
    Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57(2), 265–269 (2010). doi: 10.1140/epjd/e2010-00017-8 CrossRefGoogle Scholar
  10. 10.
    Liang, H., Liu, J., Feng, S., Chen, J.: Quantum teleportation with partially entangled states via noisy channels. Quantum Inf. Process. 12(8), 2671–2687 (2013). doi: 10.1007/s11128-013-0555-3 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). doi: 10.1103/physrevlett.69.2881 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kaye, P., Laflamme, R.: An Introduction to Quantum Computing. Oxford University Press (2007)Google Scholar
  13. 13.
    Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. Int. J. Quantum Inf. 6(02), 209–218 (2008)CrossRefGoogle Scholar
  14. 14.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Tualle-Brouri, R.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  15. 15.
    Elliott, C.: Building the quantum network. New J. Phys. 4(1), 46 (2002)CrossRefGoogle Scholar
  16. 16.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current Status of the DARPA Quantum Network. In Defense and Security, pp. 138–149. International Society for Optics and Photonics (2005)Google Scholar
  17. 17.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Proceedings of the 9th International Conference on Computer Engineering and Applications (CEA’15). Advances in Information Science And Computer Engineering, pp. 504–518 (2015)Google Scholar
  18. 18.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Spec. Top. 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  19. 19.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)CrossRefGoogle Scholar
  21. 21.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)CrossRefGoogle Scholar
  22. 22.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)Google Scholar
  23. 23.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)CrossRefGoogle Scholar
  24. 24.
    Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B-Condens. Matter Complex Syst. 41(1), 75–78 (2004)CrossRefGoogle Scholar
  25. 25.
    Cai, Q.Y.: The Ping-Pong protocol can be attacked without eavesdropping (2004). arXiv:quant-ph/0402052
  26. 26.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 022338 (2006)CrossRefGoogle Scholar
  27. 27.
    Xue, P., Han, C., Yu, B., Lin, X.M., Guo, G.C.: Entanglement preparation and quantum communication with atoms in optical cavities. Phys. Rev. A 69(5), 052318 (2004)CrossRefGoogle Scholar
  28. 28.
    Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)CrossRefGoogle Scholar
  29. 29.
    Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75(2), 026301 (2007)CrossRefGoogle Scholar
  30. 30.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)CrossRefGoogle Scholar
  31. 31.
    Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by EPR pairs and entanglement swapping. Nuovo Cimento B Serie 119, 313 (2004)Google Scholar
  32. 32.
    Ting, G., Feng-Li, Y., Zhi-Xi, W.: A simultaneous quantum secure direct communication scheme between the central party and other M parties. Chin. Phys. Lett. 22(10), 2473 (2005)CrossRefGoogle Scholar
  33. 33.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Optics communications 253(1), 15–20 (2005)CrossRefGoogle Scholar
  34. 34.
    Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)CrossRefMATHGoogle Scholar
  35. 35.
    Qing-Yu, C., Bai-Wen, L.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601 (2004)CrossRefGoogle Scholar
  36. 36.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)CrossRefMATHGoogle Scholar
  37. 37.
    Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)CrossRefGoogle Scholar
  38. 38.
    Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69(5), 054301 (2004)CrossRefGoogle Scholar
  39. 39.
    Ying, S., Qiao-Yan, W., Fu-Chen, Z.: Multiparty quantum chatting scheme. Chin. Phys. Lett. 25(3), 828 (2008)CrossRefGoogle Scholar
  40. 40.
    Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4(6), 376–381 (2010)CrossRefGoogle Scholar
  41. 41.
    Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309 (2001)CrossRefGoogle Scholar
  42. 42.
    Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)CrossRefGoogle Scholar
  43. 43.
    Zeng, G., Zhang, W.: Identity verification in quantum key distribution. Phys. Rev. A 61(2), 022303 (2000)CrossRefGoogle Scholar
  44. 44.
    Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62(2), 022305 (2000)CrossRefGoogle Scholar
  45. 45.
    Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651 (1996)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of point to multipoint QKD communication systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, pp. NW 25–31. IEEE (2012)Google Scholar
  47. 47.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp. 38–47. The Society of Digital Information and Wireless Communication (2015)Google Scholar
  48. 48.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2014)CrossRefGoogle Scholar
  49. 49.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  51. 51.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  52. 52.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv:1704.00005
  53. 53.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  54. 54.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  55. 55.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C4H4N2) (NO3)2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  56. 56.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  57. 57.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  58. 58.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  59. 59.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021. IGI Global (2017)Google Scholar
  60. 60.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  61. 61.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  62. 62.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of Bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  63. 63.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar
  68. 68.
    Simmons, G.J.: How to insure that data acquired to verify treaty compliance are trustworthy. Proc. IEEE 76(5), 621–627 (1988)CrossRefGoogle Scholar
  69. 69.
    Simmons, G.J.: Authentication theory/coding theory. In: Advances in Cryptology, pp. 411–431. Springer, Berlin, Heidelberg (1985)Google Scholar
  70. 70.
    Holevo, A.S.: Statistical problems in quantum physics. In: Proceedings of the Second Japan-USSR Symposium on Probability Theory, pp. 104–119. Springer, Berlin, Heidelberg (1973)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
    • 2
  • O. Tarawneh
    • 3
  • Mohamed Elhoseny
    • 1
  • J. Batle
    • 4
  • Mosayeb Naseri
    • 5
  • Aboul Ella Hassanien
    • 6
  • M. Abedl-Aty
    • 2
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.University of Science and TechnologyZewail City of Science and TechnologyGizaEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Departament de FísicaUniversitat de Les Illes BalearsPalma de Mallorca, Balearic IslandsSpain
  5. 5.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  6. 6.Faculty of Computers and InformationCairo UniversityGizaEgypt

Personalised recommendations