IPsec Multicast Architecture Based on Quantum Key Distribution, Quantum Secret Sharing and Measurement

  • Ahmed Farouk
  • O. Tarawneh
  • Mohamed Elhoseny
  • J. Batle
  • Mosayeb Naseri
  • Aboul Ella Hassanien
  • M. Abedl-Aty
Chapter
Part of the Studies in Big Data book series (SBD, volume 33)

Abstract

In this chapter, securing the transmitted multicast information can be achieved through IPsec multicast architecture. The process of IPsec involves the sender and destinations to agree on IPsec keys. These keys are used for protection transmitted information among communicated peers over IPsec network. IPsec depends on classical algorithm for key generation and distribution. These algorithms proved their conditional security which means intruder can break the algorithm and intercept the communication process. A new IPsec multicast architecture is proposed. The proposed architecture is divided into five main processes. The most important process is key generation and distribution. The key generation and distribution through IPsec multicast network is achieved using quantum algorithms. Quantum keys proved their unconditional security according to their physical characteristics. Sender and receivers communicate through two channels; quantum and classical. Encryption and decryption processes depend on agreed quantum keys and classical cryptographic algorithms. IPsec depends on quantum key distribution for creating keys for IPsec security associations. The confidentiality and authentication of the proposed architecture is analyzed.

Keywords

Quantum key distribution Quantum QKD node-by-node routing Quantum key generation and distribution 

References

  1. 1.
    Bellovin, S.M.: Problem areas for the IP security protocols. In: Proceedings of the 6th conference on USENIX Security Symposium, Focusing on Applications of Cryptography, Vol. 6, p. 21. USENIX Association (1996)Google Scholar
  2. 2.
    Paterson, K.G., Yau, A.K.: Cryptography in theory and practice: the case of encryption in IPsec. In: Advances in Cryptology-EUROCRYPT 2006, pp. 12–29. Springer Berlin, Heidelberg (2006)Google Scholar
  3. 3.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing. The Society of Digital Information and Wireless Communication, pp. 38–47 (2015)Google Scholar
  4. 4.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley (2007)Google Scholar
  5. 5.
    Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only configurations. In IEEE Symposium on Security and Privacy, Vol. 161, pp. 335–349)Google Scholar
  6. 6.
    Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D., Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans. Inf. Syst. Secur. (TISSEC) 7(2), 242–273 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Kent, S., Atkinson, R.: RFC 2401: Security architecture for the Internet protocol (1998)Google Scholar
  8. 8.
    Kent, S., Seo, K.: RFC 4301: Security architecture for the Internet protocol (2005)Google Scholar
  9. 9.
    Atkinson, R., Header, I.A.: RFC 1826. Naval Research Laboratory (1995)Google Scholar
  10. 10.
    Kent, S., Header, I.A.: RFC 4302: IETF, December (2005)Google Scholar
  11. 11.
    Kent, S., Atkinson, R.: RFC 2402: IP authentication header (1998)Google Scholar
  12. 12.
    Kent, S., Atkinson, R.: RFC 2401: Security architecture for the internet protocol (1998)Google Scholar
  13. 13.
    Kent, S., Seo, K.: RFC 4301: Security architecture for the internet protocol (2005)Google Scholar
  14. 14.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)CrossRefMATHGoogle Scholar
  16. 16.
    Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography, or unforgeable subway tokens. In: Advances in Cryptology, pp. 267–275. Springer, US (1983)Google Scholar
  17. 17.
    Bennett, C.H., Brassard, G. An update on quantum cryptography. In: Advances in Cryptology, pp. 475–480. Springer Berlin, Heidelberg (1985)Google Scholar
  18. 18.
    Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). doi: 10.1016/j.tcs.2014.05.025 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). doi: 10.1038/299802a0 CrossRefMATHGoogle Scholar
  20. 20.
    Zeng, G.H.: Quantum Cryptology. Science Press (2006)Google Scholar
  21. 21.
    Zeng, G.: Quantum Private Communication. Higher Education Press, Beijing (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Proceedings of the 9th International Conference on Computer Engineering and Applications (CEA’15). Advances in Information Science and Computer Engineering, pp. 504–518 (2015)Google Scholar
  23. 23.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Euro. Phys. J. Spec. Top. 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  24. 24.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of point to multipoint QKD communication systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, pp. NW 25–31. IEEE (2012)Google Scholar
  25. 25.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing. The Society of Digital Information and Wireless Communication, pp. 38–47 (2015)Google Scholar
  26. 26.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2014)CrossRefGoogle Scholar
  27. 27.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Opt-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  29. 29.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  30. 30.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv preprint arXiv:1704.00005
  31. 31.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  32. 32.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  33. 33.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu(C4H4N 2)(NO3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  34. 34.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  35. 35.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  36. 36.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Opt-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  37. 37.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021. IGI GlobalGoogle Scholar
  38. 38.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  39. 39.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Euro. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  40. 40.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of Bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  41. 41.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
    • 2
  • O. Tarawneh
    • 3
  • Mohamed Elhoseny
    • 1
  • J. Batle
    • 4
  • Mosayeb Naseri
    • 5
  • Aboul Ella Hassanien
    • 6
  • M. Abedl-Aty
    • 2
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.University of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Departament de FísicaUniversitat de Les Illes BalearsPalma de Mallorca, Balearic IslandsSpain
  5. 5.Department of PhysicsIslamic Azad UniversityKermanshahIran
  6. 6.Faculty of Computers and InformationCairo UniversityGizaEgypt

Personalised recommendations