Quantum Key Distribution Over Multi-point Communication System: An Overview

  • Ahmed Farouk
  • O. Tarawneh
  • Mohamed Elhoseny
  • J. Batle
  • Mosayeb Naseri
  • Aboul Ella Hassanien
  • M. Abedl-Aty
Part of the Studies in Big Data book series (SBD, volume 33)


Most existing realizations of quantum key distribution (QKD) are point-to-point systems with one source transferring to only one destination. Growth of these single-receiver systems has now achieved a reasonably sophisticated point. However, many communication systems operate in a point-to-multi-point (Multicast) configuration rather than in point-to-point mode, so it is crucial to demonstrate compatibility with this type of network in order to maximize the application range for QKD.


Quantum key distribution Quantum-back-bone Quantum data link layer 


  1. 1.
    Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014). doi: 10.1016/j.tcs.2014.05.025 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)CrossRefMATHGoogle Scholar
  3. 3.
    Chuang, J.C.I., Sirbu, M.A.: pricing multicast communication: a cost-based approach. Telecommun. Syst. 17(3), 281–297 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Phillips, G., Shenker, S., Tangmunarunkit, H.: Scaling of multicast trees: comments on the Chuang-Sirbu Scaling Law. ACM SIGCOMM Comput. Commun. Rev. 29(4), 41–51). (1999) (ACM)Google Scholar
  5. 5.
    Kumar, Y., Munjal, R., Sharma, H.: Comparison of symmetric and asymmetric cryptography with existing vulnerabilities and countermeasures. Int. J. Comput. Sci. Manage. Stud. 11(03) (2011)Google Scholar
  6. 6.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis (2013)Google Scholar
  7. 7.
    Forouzan, A.B.: Data Communications and Networking (sie). Tata McGraw-Hill Education (2006)Google Scholar
  8. 8.
    Friend, G.: Understanding Data Communications. Texas Instruments, Dallas, Tx. (1984)Google Scholar
  9. 9.
    Hughes, L.: Data Communications. McGraw-Hill, New York (1992)Google Scholar
  10. 10.
    Stallings, W.: Data and Computer Communications. Pearson/Prentice Hall (2007)Google Scholar
  11. 11.
    Ferguson, N., Schneier, B.: Practical Cryptography. Indianapolis, IN [etc.]. Wiley (2003)Google Scholar
  12. 12.
    Van Lint, J.H.: Introduction to Coding Theory, vol. 86. Springer Science & Business Media (1999)Google Scholar
  13. 13.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In 8th International Conference on Informatics and Systems (INFOS), Cairo, pp. NW 25–31. IEEE (2012)Google Scholar
  14. 14.
    Mink, A., Frankel, S., Perlner, R.: Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration (2010). arXiv preprint arXiv:1004.0605
  15. 15.
    Hughes, R.J., Luther, G.G., Morgan, G.L., Peterson, C.G., Simmons, C.: Quantum cryptography over underground optical fibers. In: Advances in Cryptology—CRYPTO’96, pp. 329–342. Springer, Heidelberg, January 1996Google Scholar
  16. 16.
    Stucki, D., Gisin, N., Guinnard, O., Ribordy, G., Zbinden, H.: Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4(1), 41 (2002)CrossRefGoogle Scholar
  17. 17.
    Bethune, D.S., Risk, W.P.: Autocompensating quantum cryptography. New J. Phys. 4(1), 42 (2002)CrossRefGoogle Scholar
  18. 18.
    Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4, 82 (2002)CrossRefGoogle Scholar
  19. 19.
    Bienfang, J., Gross, A., Mink, A., Hershman, B., Nakassis, A., Tang, X., Wen, J.: Quantum key distribution with 1.25 Gbps clock synchronization. Opt. Express 12(9), 2011–2016 (2004)CrossRefGoogle Scholar
  20. 20.
    Tang, X., Ma, L., Mink, A., Nakassis, A., Xu, H., Hershman, B., Williams, C.: Quantum key distribution system operating at sifted-key rate over 4 Mbit/s. In: Defense and Security Symposium, pp. 62440P–62440P. International Society for Optics and Photonics, May 2006Google Scholar
  21. 21.
    Xu, H., Ma, L., Mink, A., Hershman, B., Tang, X.: 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. Opt. Express 15(12), 7247–7260 (2007)CrossRefGoogle Scholar
  22. 22.
    Jackson, D.J., Giliam, D.P., Dowling, J.P.: Quantum Network Protocols (2001)Google Scholar
  23. 23.
    Curcic, T., Filipkowski, M.E., Chtchelkanova, A., D’Ambrosio, P.A., Wolf, S.A., Foster, M., Cochran, D.: Quantum networks: from quantum cryptography to quantum architecture. ACM SIGCOMM Comput. Commun. Rev. 34(5), 3–8 (2004)CrossRefGoogle Scholar
  24. 24.
    Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2 (2008)Google Scholar
  25. 25.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)CrossRefGoogle Scholar
  26. 26.
    Nguyen, T.M.T., Sfaxi, M.A., Ghernaouti-Hélie, S.: 802.11 i encryption key distribution using quantum cryptography. J. Netw. 1(5), 9–20 (2006)Google Scholar
  27. 27.
    Ghernaouti-Hélie, S., Sfaxi, M.A.: Upgrading PPP security by quantum key distribution. In: Network Control and Engineering for QoS, Security and Mobility, vol. IV, pp. 45–59. Springer US (2007)Google Scholar
  28. 28.
    Sfaxi, M.A., Ghernaouti-Hélie, S., Ribordy, G., Gay, O.: Using quantum key distribution within IPSEC to secure MAN communications. In: Proceedings of Metropolitan Area Networks (MAN2005) (2005)Google Scholar
  29. 29.
    Peng, C.Z., Yang, T., Bao, X.H., Zhang, J., Jin, X.M., Feng, F.Y., Pan, J.W.: Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94(15), 150501 (2005)CrossRefGoogle Scholar
  30. 30.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 43 (2002)CrossRefGoogle Scholar
  31. 31.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Spec. Top. 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  32. 32.
    Deering, S.: Host Extension for IP Multicasting. RFC 1112 (1989)Google Scholar
  33. 33.
    Deering, S.E.: Multicast Routing in a Datagram Internetwork (No. STAN-CS-92–1415). Stanford University CA Department of Computer Science (1991)Google Scholar
  34. 34.
    Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. Int. J. Quantum Inf. 6(02), 209–218 (2008)CrossRefGoogle Scholar
  35. 35.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Tualle-Brouri, R.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  36. 36.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Defense and Security, pp. 138–149. International Society for Optics and Photonics May 2005Google Scholar
  37. 37.
    Alleaume, R., Riguidel, M., Weinfurter, H., Gisin, N., Grangier, P., Dianati, M., Godfrey, M., et al.: SECOQC White Paper on Quantum Key Distribution and Cryptography. No. quant-ph/0701168 (2007)Google Scholar
  38. 38.
    Khan, M.M., Hyder, S., Pathan, M.K., Sheikh, K.H.: A Quantum key distribution network through single mode optical fiber. In: 2006 International Symposium on Collaborative Technologies and Systems, 2006. CTS 2006, pp. 386–391. IEEE May 2006Google Scholar
  39. 39.
    Le, Q.C., Bellot, P.: Enhancement of AGT telecommunication security using quantum cryptography. In: 2006 International Conference on Research, Innovation and Vision for the Future, pp. 7–16. IEEE, February 2006Google Scholar
  40. 40.
    Kimble, H.: The quantum internet. Nature 453(7198), 1023–1030 (2008)CrossRefGoogle Scholar
  41. 41.
    Dianati, M., Alléaume, R.: Architecture of the Secoqc Quantum Key Distribution nNetwork (2006). arXiv preprint quant-ph/0610202Google Scholar
  42. 42.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  43. 43.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  44. 44.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A Note on the Possibility of Incomplete Theory (2017). arXiv preprint arXiv:1704.00005
  45. 45.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  46. 46.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  47. 47.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C 4 H 4 N 2) (NO 3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  48. 48.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  49. 49.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  50. 50.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-green-blue multi-channel quantum representation of digital images. Optik-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  51. 51.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021. IGI Global (2017)Google Scholar
  52. 52.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  53. 53.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  54. 54.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of Bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  55. 55.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Advances in Information Science and Computer Engineering, pp. 504–518 (2015)Google Scholar
  60. 60.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A. (2015). Architecture of Multicast Network Based on Quantum Secret Sharing and MeasurementGoogle Scholar
  61. 61.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Spec. Topics 223(8), 1711–1728 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
    • 2
  • O. Tarawneh
    • 3
  • Mohamed Elhoseny
    • 1
  • J. Batle
    • 4
  • Mosayeb Naseri
    • 5
  • Aboul Ella Hassanien
    • 6
  • M. Abedl-Aty
    • 2
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.Zewail City of Science and TechnologyUniversity of Science and TechnologyGizaEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Departament de FísicaUniversitat de les Illes BalearsPalma de Mallorca, Balearic IslandsSpain
  5. 5.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  6. 6.Faculty of Computers and InformationCairo UniversityGizaEgypt

Personalised recommendations