Quantum Computing and Cryptography: An Overview

  • Ahmed Farouk
  • O. Tarawneh
  • Mohamed Elhoseny
  • J. Batle
  • Mosayeb Naseri
  • Aboul Ella Hassanien
  • M. Abedl-Aty
Chapter
Part of the Studies in Big Data book series (SBD, volume 33)

Abstract

In this chapter the principles of quantum computing and communications has been proposed.

Keywords

Quantum key distribution Quantum-Back-Bone Quantum data link layer 

References

  1. 1.
    Wiesner, S.: Conj. Coding. SIGACT News 15(1), 78–88 (1983). doi: 10.1145/1008908.1008920 CrossRefGoogle Scholar
  2. 2.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973). doi: 10.1147/rd.176.0525 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980). doi: 10.1007/bf01011339 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982). doi: 10.1103/physrevlett.48.1581 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benioff, P.: Quantum mechanical hamiltonian models of turing machines. J. Stat. Phys. 29(3), 515–546 (1982). doi: 10.1007/bf01342185 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Benioff, P.: Quantum mechanical hamiltonian models of discrete processes that erase their own histories: application to turing machines. Int. J. Theor. Phys. 21(3–4), 177–201 (1982). doi: 10.1007/bf01857725 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982). doi: 10.1007/bf02650179 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). doi: 10.1038/299802a0 CrossRefMATHGoogle Scholar
  9. 9.
    Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). doi: 10.1016/j.tcs.2014.05.025 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Royal Soc. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985). doi: 10.1098/rspa.1985.0070 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). doi: 10.1103/physrevlett.69.2881 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kaye, P., Laflamme, R.: An Introduction to Quantum Computing. Oxford University Press (2007)Google Scholar
  13. 13.
    Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi: 10.1103/physrevlett.70.1895 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Stinson, D.: Cryptography. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  15. 15.
    Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57(2), 265–269 (2010). doi: 10.1140/epjd/e2010-00017-8 CrossRefGoogle Scholar
  16. 16.
    Liang, H., Liu, J., Feng, S., Chen, J.: Quantum teleportation with partially entangled states via noisy channels. Quant. Inf. Process. 12(8), 2671–2687 (2013). doi: 10.1007/s11128-013-0555-3 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  18. 18.
    Zeng, G.H.: Quantum Cryptology: Science Press (2006)Google Scholar
  19. 19.
    Van Assche, G.: Quantum Cryptography and Secret-key Distillation. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Special Topics 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  21. 21.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, IEEE pp. NW 25–31. (2012)Google Scholar
  22. 22.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing. The Society of Digital Information and Wireless Communication, pp. 38–47 (2015)Google Scholar
  23. 23.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080–16080Google Scholar
  24. 24.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quant. Inf. Process. 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik Int. J. Light Electron Optics 139, 77–86 (2017)CrossRefGoogle Scholar
  26. 26.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  27. 27.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory. arXiv preprint (2017) arXiv:1704.00005
  28. 28.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  29. 29.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  30. 30.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C4 H4 N2) (NO3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  31. 31.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  32. 32.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  33. 33.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik Int. J. Light Elect. Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  34. 34.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends IGI Global, pp. 997–1021Google Scholar
  35. 35.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quant. Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  36. 36.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  37. 37.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of bell nonlocality across a quantum spin chain. Int. J. Quant. Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  38. 38.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quant. Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quant. Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quant. Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Advances in Information Science and Computer Engineering, 504–518 (2015)Google Scholar
  43. 43.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar
  44. 44.
    Zeng, G.: Quantum Private Communication. Higher Education Press, Beijing (2010)CrossRefMATHGoogle Scholar
  45. 45.
    Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). doi: 10.1103/physreva.52.3457 CrossRefGoogle Scholar
  46. 46.
    Hirvensalo, M.: Quantum Computing. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  47. 47.
    Sharbaf, M.S.: Quantum cryptography: a new generation of information technology security system. In: Information Technology: New Generations, 2009. ITNG’09. Sixth International Conference on IEEE pp. 1644–1648 (April, 2009)Google Scholar
  48. 48.
    Aharonov, D.: A Simple Proof that Toffoli and Hadamard are Quantum Universal. arXiv preprint quant-ph/0301040 (2003)Google Scholar
  49. 49.
    Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing, vol. 1. Springer, New York (1998)MATHGoogle Scholar
  50. 50.
    Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quant. Inf. Process. 8(4), 297–318 (2009)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Haghparast, M., Mohammadi, M., Navi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circ. Syst. Comp. 18(02), 311–323 (2009)CrossRefMATHGoogle Scholar
  52. 52.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)CrossRefGoogle Scholar
  53. 53.
    Martín-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.: Experimental realization of shor’s quantum factoring algorithm using Qubit recycling. Nat. Photon. 6(11), 773–776 (2012)CrossRefGoogle Scholar
  54. 54.
    Politi, A., Matthews, J.C., O’Brien, J.L.: Shor’s Quantum factoring algorithm on a photonic chip. Science, 325(5945), 1221–1221 (2009)Google Scholar
  55. 55.
    Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Pan, J.W.: Experimental Free-space Quantum Teleportation. Nat. Photonics 4(6), 376–381 (2010)CrossRefGoogle Scholar
  56. 56.
    Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Pan, J.W.: Quantum Teleportation and Entanglement Distribution over 100-kilometre Free-space Channels. Nature 488(7410), 185–188 (2012)CrossRefGoogle Scholar
  57. 57.
    Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Pan, J.W.: Experimental Quantum Teleportation of a Two-qubit Composite System. Nat. Phys. 2(10), 678–682 (2006)CrossRefGoogle Scholar
  58. 58.
    Huang, Y.F., Ren, X.F., Zhang, Y.S., Duan, L.M., Guo, G.C.: Experimental Teleportation of a Quantum Controlled-NOT Gate. Phys. Rev. Lett. 93(24), 240501 (2004)CrossRefGoogle Scholar
  59. 59.
    Fang, X., Zhu, X., Feng, M., Mao, X., Du, F.: Experimental implementation of dense coding using nuclear magnetic resonance. Phys. Rev. A, 61(2), (2000) doi: 10.1103/physreva.61.022307
  60. 60.
    Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 76(25), 4656 (1996)CrossRefGoogle Scholar
  61. 61.
    Bell, J.S.: On the Einstein-Podolsky-Rosen Paradox. Physics 1(3), 195–200 (1964)Google Scholar
  62. 62.
    Aspect, A., Dalibard, J., Roger, G.: Experimental Test of Bell’s Inequalities using Time-varying Analyzers. Phys. Rev. Lett. 49(25), 1804 (1982)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic bell states. Phys. Rev. A, 60(1), 157 (1999)Google Scholar
  64. 64.
    Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47(10), 777 (1935)Google Scholar
  65. 65.
    He, G., Zhu, J., Zeng, G.: Quantum Secure Communication using Continuous Variable Einstein-Podolsky-Rosen Correlations. Phys. Rev. A, 73(1), 012314 (2006)Google Scholar
  66. 66.
    Greenberger, D.M., Horne, M., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Ed. Kafatos, M. (1989)Google Scholar
  67. 67.
    Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Pan, J.W.: Experimental Entanglement of Six Photons in Graph States. Nat. Phys. 3(2), 91–95 (2007)CrossRefGoogle Scholar
  68. 68.
    Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC Quantum-key-distribution Network in Vienna. Int. J. Quant. Inf. 6(02), 209–218 (2008)CrossRefGoogle Scholar
  69. 69.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Tualle-Brouri, R.: The SECOQC Quantum Key Distribution Network in Vienna. New J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  70. 70.
    Elliott, C.: Building the Quantum Network. New J. Phys. 4(1), 46 (2002)CrossRefGoogle Scholar
  71. 71.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Defense and Security. International Society for Optics and Photonics pp. 138–149 (May 2005)Google Scholar
  72. 72.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of Decentralized Multicast Network Using Quantum Key Distribution and Hybrid WDM-TDM. Proceedings of the 9th International Conference on Computer Engineering and Applications (CEA ‘15). Advances in Information Science And Computer Engineering, 504–518 (2015)Google Scholar
  73. 73.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum Cryptography. Rev. Mod. Phys. 74(1), 145 (2002)CrossRefMATHGoogle Scholar
  74. 74.
    Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with Single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407 (2002)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Shannon, C.E.: A Mathematical Theory of Communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Shannon, C.E.: Communication Theory of Secrecy Systems*. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Shields, A., Zhiliang, Y.: Key to the Quantum Industry. Phys. World 20(3), 24–29 (2007)CrossRefGoogle Scholar
  78. 78.
    Kumar, Y., Munjal, R., Sharma, H.: Comparison of Symmetric and Asymmetric Cryptography with Existing Vulnerabilities and Countermeasures. Int. J. Comp. Sci. Manag. Studies, 11(03) (2011)Google Scholar
  79. 79.
    Ansari, H., Parameswaran, A., Antani, L., Aditya, B., Taly, A., Kumar, L.: Quantum Cryptography and Quantum Computation. IIT, BombayGoogle Scholar
  80. 80.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis (2013)Google Scholar
  81. 81.
    Forouzan, A.B.: Data Communications & Networking (sie). Tata McGraw-Hill Education (2006)Google Scholar
  82. 82.
    Friend, G.: Understanding Data Communications. Texas Instruments, Dallas, Tx. (1984)Google Scholar
  83. 83.
    Hughes, L.: Data communications. McGraw-Hill, New York (1992)Google Scholar
  84. 84.
    Stallings, W.: Data and Computer Communications. Pearson/Prentice Hall (2007)Google Scholar
  85. 85.
    Ferguson, N., Schneier, B.: Practical Cryptography. Indianapolis, IN [etc.]: Wiley (2003)Google Scholar
  86. 86.
    Van Lint, J.H.: Introduction to Coding Theory, vol. 86. Springer Science & Business Media (1999)Google Scholar
  87. 87.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. Information Theory, IEEE Transactions on 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Bellovin, S.M.: Problem areas for the IP security protocols. In: Proceedings of the 6th conference on USENIX Security Symposium, Focusing on Applications of Cryptography vol. 6, pp. 21–21. USENIX Association (1996)Google Scholar
  89. 89.
    Paterson, K.G., Yau, A.K.: Cryptography in theory and practice: the case of encryption in IPsec. In: Advances in Cryptology-EUROCRYPT pp. 12–29. Springer, Berlin Heidelberg (2006)Google Scholar
  90. 90.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley (2007)Google Scholar
  91. 91.
    Rafaeli, S., Hutchison, D.: A survey of key management for secure group communication. ACM Comput. Surveys (CSUR) 35(3), 309–329 (2003)CrossRefGoogle Scholar
  92. 92.
    Bandara, H.D., Jayasumana, A.P.: Collaborative applications over peer-to-peer systems-challenges and solutions. Peer Peer Network. Appl. 6(3), 257–276 (2013)CrossRefGoogle Scholar
  93. 93.
    Guo, C.J., Huang, Y.M.: Residency-based distributed collaborative key agreement for dynamic peer groups. Int. J. Innov. Comput. Inform. Control 8(8), 5523–5542 (2012)Google Scholar
  94. 94.
    Siramdasu, H., Krishna, H.: Communication in vibrant peer groups for cluster key management. Int. J. Eng. Trends Technol. 4(5), 1367–1373 (2013)Google Scholar
  95. 95.
    SuganyaDevi, D., Padmavathi, G.: Secure Multicast Key Distribution for Mobile Ad Hoc Networks. arXiv preprint (2010)arXiv:1003.1799
  96. 96.
    Devaraju, S., Ganapathi, P.: Dynamic clustering for QoS based secure multicast key distribution in mobile ad hoc networks. IJCSI Int. J. Comp. Sci. 7(1–2), 30–37 (2010)Google Scholar
  97. 97.
    Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE vol. 2, pp. 708–716. IEEE (1999)Google Scholar
  98. 98.
    Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for multicast encryption. In: Advances in Cryptology—EUROCRYPT’99 Springer Berlin Heidelberg, pp. 459–474 (1999)Google Scholar
  99. 99.
    Caronni, G., Waldvogel, M., Sun, D., Plattner, B.: Efficient Security for large and dynamic multicast groups. In: Enabling Technologies: Infrastructure for Collaborative Enterprises, 1998. (WET ICE’98) Proceedings on Seventh IEEE International Workshops on, pp. 376–383. IEEE (1998)Google Scholar
  100. 100.
    Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and Architectures. RFC 2627 (1999)Google Scholar
  101. 101.
    Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs. Network. IEEE/ACM Trans. 8(1), 16–30 (2000)CrossRefGoogle Scholar
  102. 102.
    Degabriele, J.P., Paterson, K.G.: Attacking the IPsec Standards in Encryption-only Configurations. In: IEEE Symposium on Security and Privacy vol. 161, pp. 335–349 (2007)Google Scholar
  103. 103.
    Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D., Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans. Inform. Syst. Secur. (TISSEC) 7(2), 242–273 (2004)CrossRefMATHGoogle Scholar
  104. 104.
    Kent, S., Atkinson, R.: RFC 2401: Security Architecture for the Internet Protocol (1998)Google Scholar
  105. 105.
    Kent, S., Seo, K.: RFC 4301: Security Architecture for the Internet Protocol (2005)Google Scholar
  106. 106.
    Atkinson, R., Header, I.A.: RFC 1826. Naval Research Laboratory (1995)Google Scholar
  107. 107.
    Kent, S., Header, I.A.: RFC 4302. IETF, December (2005)Google Scholar
  108. 108.
    Kent, S., Atkinson, R.: RFC 2402: IP Authentication Header (1998)Google Scholar
  109. 109.
    Atkinson, R.: RFC 1827. IP Encapsulating Security Payload (ESP) (1995)Google Scholar
  110. 110.
    Errata, K.S.: IP Encapsulating Security Payload. RFC 4303 (2005)Google Scholar
  111. 111.
    Elhoseny, M., El-Minir,R.A/., Yuan, X.: A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. J. King Saud Univ. Comp. Inform. Sci, 28(3): 262–275 (2016)Google Scholar
  112. 112.
    Elhoseny, M., Yuan, X., El-Minir, H., Riad, A.: An energy efficient encryption method for secure dynamic WSN. Sec. Commun. Networks, (9):2024–2031 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
    • 2
  • O. Tarawneh
    • 3
  • Mohamed Elhoseny
    • 1
  • J. Batle
    • 4
  • Mosayeb Naseri
    • 5
  • Aboul Ella Hassanien
    • 6
  • M. Abedl-Aty
    • 2
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.University of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Department de FísicaUniversitat de Les Illes BalearsPalma de MallorcaSpain
  5. 5.Department of PhysicsKermanshah Branch, Islamic Azad UniversityKermanshahIran
  6. 6.Faculty of Computers and InformationCairo UniversityGizaEgypt

Personalised recommendations