Advertisement

Different Architectures of Quantum Key Distribution Network

  • Ahmed Farouk
  • O. Tarawneh
  • Mohamed Elhoseny
  • J. Batle
  • Mosayeb Naseri
  • Aboul Ella Hassanien
  • Muzaffar Lone
Chapter
Part of the Studies in Big Data book series (SBD, volume 33)

Abstract

Most existing realizations of quantum key distribution (QKD) are point-to-point systems with one source transferring to only one destination. Growth of these single-receiver systems has now achieved a reasonably sophisticated point. However, many communication systems operate in a point-to-multi-point (Multicast) configuration rather than in point-to-point mode, so it is crucial to demonstrate compatibility with this type of network in order to maximize the application range for QKD. The researchers have proposed several approaches for Quantum Key Distribution Network. In this chapter we will discuss these various architectures.

Keywords

Quantum key distribution Quantum cryptography DARPA network Deterministic secure direct communication 

References

  1. 1.
    Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC quantum-key-distribution network in Vienna. Int. J. Quantum Inf. 6(02), 209–218 (2008)CrossRefGoogle Scholar
  2. 2.
    Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Tualle-Brouri, R.: The SECOQC Quantum Key Distribution Network in Vienna. New J. Phys. 11(7), 075001 (2009)CrossRefGoogle Scholar
  3. 3.
    Elliott, C.: Building the Quantum Network. New J. Phys. 4(1), 46 (2002)CrossRefGoogle Scholar
  4. 4.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Defense and Security, International Society for Optics and Photonics, pp. 138–149, May 2005Google Scholar
  5. 5.
    Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Proceedings of the 9th International Conference on Computer Engineering and Applications (CEA’15), Advances in Information Science And Computer Engineering, pp. 504–518 (2015)Google Scholar
  6. 6.
    Alleaume, R., Riguidel, M., Weinfurter, H., Gisin, N., Grangier, P., Dianati, M., Godfrey, M., et al.: SECOQC White Paper on Quantum Key Distribution and Cryptography. No. quant-ph/0701168 (2007)Google Scholar
  7. 7.
    Dianati, M., Alléaume, R., Gagnaire, M., Shen, X.S.: Architecture and protocols of the future european quantum key distribution network. Secur. Commun. Netw. 1(1), 57–74 (2008)CrossRefGoogle Scholar
  8. 8.
    Khan, M.M., Hyder, S., Pathan, M.K., Sheikh, K.H.: A Quantum key distribution network through single mode optical fiber. In: 2006 International Symposium on Collaborative Technologies and Systems, CTS 2006, pp. 386–391. IEEE, May 2006Google Scholar
  9. 9.
    Le, Q.C., Bellot, P.: Enhancement of AGT telecommunication security using quantum cryptography. In: 2006 International Conference on Research, Innovation and Vision for the Future, pp. 7–16. IEEE (2006, February)Google Scholar
  10. 10.
    Kimble, H.: The quantum internet. Nature 453(7198), 1023–1030 (2008)CrossRefGoogle Scholar
  11. 11.
    Dianati, M., Alléaume, R.: Architecture of the Secoqc Quantum Key Distribution nNetwork. arXiv: preprint quant-ph/0610202 (2006)Google Scholar
  12. 12.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp. 38–47. The Society of Digital Information and Wireless Communication (2015)Google Scholar
  13. 13.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080–16080 (2014)Google Scholar
  14. 14.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Spec. Top. 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  15. 15.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of point to multipoint QKD communication systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, (pp. NW 25–31). IEEE, May 2012Google Scholar
  16. 16.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  18. 18.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  19. 19.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv preprint arXiv:1704.00005
  20. 20.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  21. 21.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  22. 22.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C 4 H 4 N 2) (NO 3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  23. 23.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  24. 24.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  25. 25.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-green-blue multi-channel quantum representation of digital images. Optik-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  26. 26.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021. IGI Global (2017)Google Scholar
  27. 27.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  28. 28.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  29. 29.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of Bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  30. 30.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar
  35. 35.
    Khan, M.M., Xu, J.: Enhancing grid security using quantum key distribution. Int. J. Secur. Appl. 6(4) (2012)Google Scholar
  36. 36.
    Chakrabarti, A., Damodaran, A., Sengupta, S.: Grid computing security: a taxonomy. IEEE Secur. Priv. 1, 44–51 (2008)CrossRefGoogle Scholar
  37. 37.
    Zhao, S., Aggarwal, A., Kent, R.D.: PKI-based authentication mechanisms in grid systems. In: 2007 International Conference on Networking, Architecture, and Storage, NAS 2007, pp. 83–90. IEEE, July 2007Google Scholar
  38. 38.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)CrossRefGoogle Scholar
  39. 39.
    Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35(28), L407 (2002)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)CrossRefGoogle Scholar
  41. 41.
    Batle, J., Ciftja, O., Abdalla, S., Elhoseny, M., Alkhambashi, M., Farouk, A.: Equilibrium charge distribution on a finite straight one-dimensional wire. Eur. J. Phys. 38(5), (2017). http://iopscience.iop.org/article/10.1088/1361-6404/aa78bb/meta
  42. 42.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Man, Z.X., Xia, Y.J., An, N.B.: quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855 (2006)CrossRefGoogle Scholar
  44. 44.
    Hillebrand, A.: Superdense coding with gHZ and quantum key distribution with W in the ZX-calculus. In: EPTCS, vol. 95, pp. 103–121Google Scholar
  45. 45.
    Gorbachev, V.N., Trubilko, A.I.: Quantum teleportation of EPR pair by three-particle entanglement. JETP Lett. 91(quant-ph/9906110), 894–898 (2000)Google Scholar
  46. 46.
    Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5(1), 136 (2003)CrossRefGoogle Scholar
  47. 47.
    Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmed Farouk
    • 1
    • 2
  • O. Tarawneh
    • 3
  • Mohamed Elhoseny
    • 1
  • J. Batle
    • 4
  • Mosayeb Naseri
    • 5
  • Aboul Ella Hassanien
    • 6
  • Muzaffar Lone
    • 7
  1. 1.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  2. 2.University of Science and Technology, Zewail City of Science and TechnologyGizaEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Departament de FísicaUniversitat de Les Illes BalearsPalma de Mallorca, Balearic IslandsSpain
  5. 5.Department of PhysicsKermanshah Branch, Islamic Azad UniversityKermanshahIran
  6. 6.Faculty of Computers and InformationCairo UniversityGizaEgypt
  7. 7.Department of PhysicsUniversity of KashmirSrinagarIndia

Personalised recommendations