The Utilization of Quantum Inspired Computational Intelligent in Power Systems Optimization

  • Mahmoud Pesaran Hajiabbas
  • Morteza Nazari-Heris
  • Sajad Madadi
  • Behnam Mohammadi-Ivatloo
Part of the Studies in Big Data book series (SBD, volume 33)


Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based intelligence can be an efficient alternative. This need is highlighted by technology advancements and bulk integration of the renewable energies in power grids. The Quantum inspired computational intelligence (QCI) techniques as a young discipline in computational intelligence field of research shows a promising future in optimization problems. The Quantum inspired computational intelligence (QCI) is known to effectively solve large-scale nonlinear optimization problems. This chapter will present a detailed overview of the quantum inspired computational intelligence and its variants in power systems optimization. Also, it provides a survey on the power system applications that have benefited from the powerful QCI as an optimization technique. For each application, technical details that are required for applying QCI, and the most efficient fitness functions are also discussed. In this chapter the definition, categorization and motivation for QCI employment in power systems will be elaborated. The major challenges and hinders for implementation will be discussed. The significance of this study is to present an overview on the applications of QCI in solving various power system problems in electrical engineering, which may be a useful resource for researchers to understand the state of art in QCI application in electric power systems to enable them for further explores. Current chapter will present the generalized introduction to the power systems optimization, the areas and categories and how their results and targets can be affected by optimization variables. Furthermore, the QCI methods for the power systems optimization will be presented.


Particle swarm optimization (PSO) Quantum inspired PSO Optimization problem Distributed generation (DG) allocation 


  1. 1.
    Suo, M., Li, Y., Huang, G., Deng, D., Li, Y.: Electric power system planning under uncertainty using inexact inventory nonlinear programming method. J. Environ. Inform. 22, (1) (2013)Google Scholar
  2. 2.
    Ding, T., Bo, R., Li, F., Sun, H.: A bi-level branch and bound method for economic dispatch with disjoint prohibited zones considering network losses. IEEE Trans. Power Syst. 30(6), 2841–2855 (2015)CrossRefGoogle Scholar
  3. 3.
    Abdolmohammadi, H.R., Kazemi, A.: A benders decomposition approach for a combined heat and power economic dispatch. Energy Convers. Manage. 71, 21–31 (2013)CrossRefGoogle Scholar
  4. 4.
    Tang, Y., He, H., Wen, J., Liu, J.: Power system stability control for a wind farm based on adaptive dynamic programming. IEEE Trans. Smart Grid 6(1), 166–177 (2015)CrossRefGoogle Scholar
  5. 5.
    Sandoval-Moreno, J., Besancon, G., Martinez, J.J.: Lagrange multipliers based price driven coordination with constraints consideration for multisource power generation systems. In: European Control Conference (ECC), pp. 1987–1992. IEEE (2014)Google Scholar
  6. 6.
    El-Ela, A.A., Allam, S.M., Shatla, M.: Maximal optimal benefits of distributed generation using genetic algorithms. Electr. Power Syst. Res. 80(7), 869–877 (2010)CrossRefGoogle Scholar
  7. 7.
    Keane, A., O’Malley, M.: Optimal allocation of embedded generation on distribution networks. IEEE Trans. Power Syst. 20(3), 1640–1646 (2005)CrossRefGoogle Scholar
  8. 8.
    Keane, A., O’Malley, M.: Optimal utilization of distribution networks for energy harvesting. IEEE Trans. Power Syst. 22(1), 467–475 (2007)CrossRefGoogle Scholar
  9. 9.
    Wu, F.F., Gross, G., Luini, J.F., Look, P.M.: A two-stage approach to solving large-scale optimal power flows. In: Power Industry Computer Applications Conference, PICA-79. IEEE Conference Proceedings, pp. 126–136. IEEE (1979)Google Scholar
  10. 10.
    Rau, N.S., Wan, Y.-H.: Optimum location of resources in distributed planning. IEEE Trans. Power Syst. 9(4), 2014–2020 (1994)CrossRefGoogle Scholar
  11. 11.
    Zhang, W., Li, F., Tolbert, L.M.: Review of reactive power planning: objectives, constraints, and algorithms. IEEE Trans. Power Syst. 22(4), 2177–2186 (2007)CrossRefGoogle Scholar
  12. 12.
    El-Khattam, W., Hegazy, Y., Salama, M.: An integrated distributed generation optimization model for distribution system planning. IEEE Trans. Power Syst. 20(2), 1158–1165 (2005)CrossRefGoogle Scholar
  13. 13.
    Atwa, Y., El-Saadany, E., Salama, M., Seethapathy, R.: Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–370 (2010)CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Gao, W.: Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets. IET Gener. Transm. Distrib. 4(2), 281–298 (2010)CrossRefGoogle Scholar
  15. 15.
    Acharya, N., Mahat, P., Mithulananthan, N.: An analytical approach for dg allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 28(10), 669–678 (2006)CrossRefGoogle Scholar
  16. 16.
    Gözel, T., Hocaoglu, M.H.: An analytical method for the sizing and siting of distributed generators in radial systems. Electr. Power Syst. Res. 79(6), 912–918 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, C., Nehrir, M.H.: Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans. Power Syst. 19(4), 2068–2076 (2004)CrossRefGoogle Scholar
  18. 18.
    Hung, D.Q., Mithulananthan, N., Bansal, R.: Analytical expressions for dg allocation in primary distribution networks. IEEE Trans. Energy Convers. 25(3), 814–820 (2010)CrossRefGoogle Scholar
  19. 19.
    Paar, C., Pelzl, J.: Understanding Cryptography: A Textbook for Students and Practitioners. Springer (2009)Google Scholar
  20. 20.
    Pesaran, M., Mohd Zin, A.A., Khairuddin, A., Shariati, O.: Optimal sizing and siting of distributed generators by a weighted exhaustive search. Electr. Power Compon. Syst. 42(11), 1131–1142 (2014)CrossRefGoogle Scholar
  21. 21.
    Harrison, G., Wallace, A.: Optimal power flow evaluation of distribution network capacity for the connection of distributed generation. IEE Proc. Gener. Transm. Distrib. 152(1), 115–122 (2005)CrossRefGoogle Scholar
  22. 22.
    Gautam, D., Mithulananthan, N.: Optimal dg placement in deregulated electricity market. Electr. Power Syst. Res. 77(12), 1627–1636 (2007)CrossRefGoogle Scholar
  23. 23.
    Algarni, A.A., Bhattacharya, K.: Disco operation considering dg units and their goodness factors. IEEE Trans. Power Syst. 24(4), 1831–1840 (2009)CrossRefGoogle Scholar
  24. 24.
    Dent, C.J., Ochoa, L.F., Harrison, G.P.: Network distributed generation capacity analysis using opf with voltage step constraints. IEEE Trans. Power Syst. 25(1), 296–304 (2010)CrossRefGoogle Scholar
  25. 25.
    Dent, C.J., Ochoa, L.F., Harrison, G.P., Bialek, J.W.: Efficient secure ac opf for network generation capacity assessment. IEEE Trans. Power Syst. 25(1), 575–583 (2010)CrossRefGoogle Scholar
  26. 26.
    Ochoa, L.F., Dent, C.J., Harrison, G.P.: Distribution network capacity assessment: Variable dg and active networks. IEEE Trans. Power Syst. 25(1), 87–95 (2010)CrossRefGoogle Scholar
  27. 27.
    Hedayati, H., Nabaviniaki, S.A., Akbarimajd, A.: A method for placement of dg units in distribution networks. IEEE Trans. Power Delivery 23(3), 1620–1628 (2008)CrossRefGoogle Scholar
  28. 28.
    Lai, L.L., Ma, J.: Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach. IEEE Trans. Power Syst. 12(1), 198–206 (1997)CrossRefGoogle Scholar
  29. 29.
    Sutthibun, T., Bhasaputra, P.: Multi-objective optimal distributed generation placement using simulated annealing. In: 2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), pp. 810–813. IEEE (2010)Google Scholar
  30. 30.
    Golshan, M.H., Arefifar, S.: Distributed generation, reactive sources and network-configuration planning for power and energy-loss reduction. IEE Proc. Gener. Transm. Distrib. 153(2), 127–136 (2006)CrossRefGoogle Scholar
  31. 31.
    Nara, K., Hayashi, Y., Ikeda, K., Ashizawa, T.: Application of tabu search to optimal placement of distributed generators. In: Power Engineering Society Winter Meeting, 2001, vol. 2, pp. 918–923. IEEE (2001)Google Scholar
  32. 32.
    Jahani, R., Hosseinzadeh, A., Hosseinzadeh, A., Abadi, M.M.: Ica-based allocation of dgs in a distribution system. Am. J. Sci. Res. 33, 64–75 (2011)Google Scholar
  33. 33.
    Soroudi, A., Ehsan, M.: Imperialist competition algorithm for distributed generation connections. IET Gener. Transm. Distrib. 6(1), 21–29 (2012)CrossRefGoogle Scholar
  34. 34.
    Rahmatian, M., Ebrahimi, E., Ghanizadeh, A., Gharehpetian, G.: Optimal sitting and sizing of dg units considering islanding operation mode of sensitive loads. In: 2012 2nd Iranian Conference on Smart Grids (ICSG), pp. 1–5. IEEE (2012)Google Scholar
  35. 35.
    Lalitha, M.P., Reddy, V.V., Usha, V., Reddy, N.S.: Application of fuzzy and pso for dg placement for minimum loss in radial distribution system (2006)Google Scholar
  36. 36.
    Haghifam, M.-R., Falaghi, H., Malik, O.: Risk-based distributed generation placement. IET Gener. Transm. Distrib. 2(2), 252–260 (2008)CrossRefGoogle Scholar
  37. 37.
    Kim, K.-H., Lee, Y.-J., Rhee, S.-B., Lee, S.-K., You, S.-K.: Dispersed generator placement using fuzzy-ga in distribution systems. In: Power Engineering Society Summer Meeting, 2002 IEEE, vol. 3, pp. 1148–1153. IEEE (2002)Google Scholar
  38. 38.
    Ekel, P.Y., Martins, C., Pereira, J., Palhares, R.M., Canha, L.N.: Fuzzy set based multiobjective allocation of resources and its applications. Comput. Math. Appl. 52(1–2), 197–210 (2006)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Ramírez-Rosado, I.J., Domínguez-Navarro, J.A.: Possibilistic model based on fuzzy sets for the multiobjective optimal planning of electric power distribution networks. IEEE Trans. Power Syst. 19(4), 1801–1810 (2004)CrossRefGoogle Scholar
  40. 40.
    Haghifam, M.-R., Malik, O.: Genetic algorithm-based approach for fixed and switchable capacitors placement in distribution systems with uncertainty and time varying loads. IET Gener. Transm. Distrib. 1(2), 244–252 (2007)CrossRefGoogle Scholar
  41. 41.
    El-Khattam, W., Bhattacharya, K., Hegazy, Y., Salama, M.: Optimal investment planning for distributed generation in a competitive electricity market. IEEE Trans. Power Syst. 19(3), 1674–1684 (2004)CrossRefGoogle Scholar
  42. 42.
    Silvestri, A., Berizzi, A., Buonanno, S.: Distributed generation planning using genetic algorithms. In: International Conference on Electric Power Engineering. PowerTech Budapest 99, p. 257. IEEE (1999)Google Scholar
  43. 43.
    Kumar, V., Gupta, I., Gupta, H.O.: Dg integrated approach for service restoration under cold load pickup. IEEE Trans. Power Delivery 25(1), 398–406 (2010)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Borges, C.L., Falcao, D.M.: Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J. Electr. Power Energy Syst. 28(6), 413–420 (2006)CrossRefGoogle Scholar
  45. 45.
    Teng, J.-H., Luor, T.-S., Liu, Y.-H.: Strategic distributed generator placements for service reliability improvements. In: Power Engineering Society Summer Meeting, IEEE, vol. 2, pp. 719–724. IEEE (2002)Google Scholar
  46. 46.
    Popović, D., Greatbanks, J., Begović, M., Pregelj, A.: Placement of distributed generators and reclosers for distribution network security and reliability. Int. J. Electr. Power Energy Syst. 27(5), 398–408 (2005)CrossRefGoogle Scholar
  47. 47.
    Ochoa, L.F., Padilha-Feltrin, A., Harrison, G.P.: Time-series-based maximization of distributed wind power generation integration. IEEE Trans. Energy Convers. 23(3), 968–974 (2008)CrossRefGoogle Scholar
  48. 48.
    Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.-C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  49. 49.
    AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)CrossRefGoogle Scholar
  50. 50.
    El-Zonkoly, A.: Optimal placement of multi-distributed generation units including different load models using particle swarm optimization. Swarm Evol. Comput. 1(1), 50–59 (2011)CrossRefGoogle Scholar
  51. 51.
    Gomez, J., Khodr, H., De Oliveira, P., Ocque, L., Yusta, J., Villasana, R., Urdaneta, A.: Ant colony system algorithm for the planning of primary distribution circuits. IEEE Trans. Power Syst. 19(2), 996–1004 (2004)CrossRefGoogle Scholar
  52. 52.
    Vlachogiannis, J.G., Hatziargyriou, N.D., Lee, K.Y.: Ant colony system-based algorithm for constrained load flow problem. IEEE Trans. Power Syst. 20(3), 1241–1249 (2005)CrossRefGoogle Scholar
  53. 53.
    Wang, L., Singh, C.: Reliability-constrained optimum placement of reclosers and distributed generators in distribution networks using an ant colony system algorithm. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(6), 757–764 (2008)Google Scholar
  54. 54.
    Chatterjee, A., Ghoshal, S., Mukherjee, V.: Artificial bee colony algorithm for transient performance augmentation of grid connected distributed generation. In: International Conference on Swarm, Evolutionary, and Memetic Computing, pp. 559–566. Springer (2010)Google Scholar
  55. 55.
    Rao, R.S., Narasimham, S., Ramalingaraju, M.: Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. Int. J. Electr. Power Energy. Syst. Eng. 1(2), 116–122 (2008)Google Scholar
  56. 56.
    Lalitha, M.P., Reddy, N.S., Reddy, V.V.: Optimal dg placement for maximum loss reduction in radial distribution system using abc algorithm. Int. J. Rev. Comput. 3, 44–52 (2010)Google Scholar
  57. 57.
    Hussain, I., Roy, A.K.: Optimal distributed generation allocation in distribution systems employing modified artificial bee colony algorithm to reduce losses and improve voltage profile. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 565–570. IEEE (2012)Google Scholar
  58. 58.
    Sohi, M.F., Shirdel, M., Javidaneh, A.: Applying bco algorithm to solve the optimal dg placement and sizing problem. In: Power Engineering and Optimization Conference (PEOCO), 5th International, pp. 71–76. IEEE (2011)Google Scholar
  59. 59.
    Noroozian, R., Molaei, S., et al.: Determining the optimal placement and capacity of dg in intelligent distribution networks under uncertainty demands by coa. In: 2012 2nd Iranian Conference on Smart Grids (ICSG), pp. 1–8. IEEE (2012)Google Scholar
  60. 60.
    Moravej, Z., Akhlaghi, A.: A novel approach based on cuckoo search for dg allocation in distribution network. Int. J. Electr. Power Energy Syst. 44(1), 672–679 (2013)CrossRefGoogle Scholar
  61. 61.
    Saravanamutthukumaran, S., Kumarappan, N.: Sizing and siting of distribution generator for different loads using firefly algorithm. In: 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 800–803. IEEE (2012)Google Scholar
  62. 62.
    Sulaiman, M.H., Mustafa, M.W., Azmi, A., Aliman, O., Rahim, S.A.: Optimal allocation and sizing of distributed generation in distribution system via firefly algorithm. In: Power Engineering and Optimization Conference (PEDCO) Melaka, Malaysia, IEEE International, pp. 84–89. IEEE (2012)Google Scholar
  63. 63.
    Gandomkar, M., Vakilian, M., Ehsan, M.: A genetic-based tabu search algorithm for optimal dg allocation in distribution networks. Electr. Power Compon. Syst. 33(12), 1351–1362 (2005)CrossRefGoogle Scholar
  64. 64.
    Moradi, M.H., Abedini, M.: A combination of genetic algorithm and particle swarm optimization for optimal dg location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 34(1), 66–74 (2012)CrossRefGoogle Scholar
  65. 65.
    Harrison, G.P., Piccolo, A., Siano, P., Wallace, A.R.: Hybrid ga and opf evaluation of network capacity for distributed generation connections. Electr. Power Syst. Res. 78(3), 392–398 (2008)CrossRefGoogle Scholar
  66. 66.
    Naderi, E., Seifi, H., Sepasian, M.S.: A dynamic approach for distribution system planning considering distributed generation. IEEE Trans. Power Delivery 27(3), 1313–1322 (2012)CrossRefGoogle Scholar
  67. 67.
    Gomez-Gonzalez, M., López, A., Jurado, F.: Optimization of distributed generation systems using a new discrete pso and opf. Electr. Power Syst. Res. 84(1), 174–180 (2012)CrossRefGoogle Scholar
  68. 68.
    Akorede, M.F., Hizam, H., Aris, I., Ab Kadir, M.: Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distrib. 5(2), 276–287 (2011)CrossRefGoogle Scholar
  69. 69.
    Zeynal, H., Hui, L.X., Jiazhen, Y., Eidiani, M., Azzopardi, B.: Improving lagrangian relaxation unit commitment with cuckoo search algorithm. In: 2014 IEEE International Conference on Power and Energy (PECon), pp. 77–82. IEEE (2014)Google Scholar
  70. 70.
    Yu, X., Zhang, X.: Unit commitment using lagrangian relaxation and particle swarm optimization. Int. J. Electr. Power Energy Syst. 61, 510–522 (2014)CrossRefGoogle Scholar
  71. 71.
    Ji, B., Yuan, X., Chen, Z., Tian, H.: Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67, 52–62 (2014)CrossRefGoogle Scholar
  72. 72.
    Ji, B., Yuan, X., Li, X., Huang, Y., Li, W.: Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration. Energy Convers. Manage. 87, 589–598 (2014)CrossRefGoogle Scholar
  73. 73.
    Jadoun, V.K., Gupta, N., Niazi, K.R., Swarnkar, A.: Enhanced particle swarm optimization for short-term non-convex economic scheduling of hydrothermal energy systems. J. Electr. Eng. Technol. 10(5), 1940–1949 (2015)CrossRefGoogle Scholar
  74. 74.
    Lu, S., Sun, C., Lu, Z.: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Convers. Manage. 51(3), 561–571 (2010)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Haghrah, A., Nazari-Heris, M., Mohammadi-Ivatloo, B.: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved mühlenbein mutation. Appl. Thermal Eng. 99, 465–475 (2016)Google Scholar
  76. 76.
    Sun, J., Palade, V., Wu, X.-J., Fang, W., Wang, Z.: Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization. IEEE Trans. Ind. Inform. 10(1), 222–232 (2014)CrossRefGoogle Scholar
  77. 77.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G.: Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: a comprehensive review. Renew. Sustain. Energy Rev. 74, 116–129 (2017)CrossRefGoogle Scholar
  78. 78.
    dos Santos Coelho, L., Mariani, V.C.: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers. Manage. 49(11), 3080–3085 (2008)CrossRefGoogle Scholar
  79. 79.
    Sun, J., Fang, W., Wang, D., Xu, W.: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method. Energy Convers. Manage. 50(12), 2967–2975 (2009)CrossRefGoogle Scholar
  80. 80.
    Meng, K., Wang, H.G., Dong, Z., Wong, K.P.: Quantum-inspired particle swarm optimization for valve-point economic load dispatch. IEEE Trans. Power Syst. 25(1), 215–222 (2010)CrossRefGoogle Scholar
  81. 81.
    Zhisheng, Z.: Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Syst. Appl. 37(2), 1800–1803 (2010)CrossRefGoogle Scholar
  82. 82.
    Mahdi, F.P., Vasant, P., Rahman, M.M., Abdullah-Al-Wadud, M., Watada, J., Kallimani, V.: Quantum particle swarm optimization for multiobjective combined economic emission dispatch problem using cubic criterion function. In: 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–5. IEEE (2017)Google Scholar
  83. 83.
    Sheikhan, M., Mohammadi, N.: Neural-based electricity load forecasting using hybrid of ga and aco for feature selection. Neural Comput. Appl. 21(8), 1961–1970 (2012)CrossRefGoogle Scholar
  84. 84.
    Ardakani, F., Ardehali, M.: Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting. Energy Convers. Manage. 78, 745–752 (2014)CrossRefGoogle Scholar
  85. 85.
    Gonzalez-Romera, E., Jaramillo-Moran, M.A., Carmona-Fernandez, D.: Monthly electric energy demand forecasting based on trend extraction. IEEE Trans. Power Syst. 21(4), 1946–1953 (2006)CrossRefGoogle Scholar
  86. 86.
    Nazari-Heris, M., Abapour, S., Mohammadi-Ivatloo, B.: Optimal economic dispatch of fc-chp based heat and power micro-grids. Appl. Thermal Eng. 114, 756–769 (2017)CrossRefGoogle Scholar
  87. 87.
    Amjady, N.: Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 16(4), 798–805 (2001)CrossRefGoogle Scholar
  88. 88.
    Tian, S., Tuanjie, L.: Short-term load forecasting based on rbfnn and qpso. In: Power and Energy Engineering Conference, APPEEC 2009. Asia-Pacific, pp. 1–4. IEEE (2009)Google Scholar
  89. 89.
    Wang, J., Liu, Z., Lu, P.: Electricity load forecasting based on adaptive quantum-behaved particle swarm optimization and support vector machines on global level. In: International Symposium on Computational Intelligence and Design, ISCID’08, vol. 1, pp. 233–236. IEEE (2008)Google Scholar
  90. 90.
    Ibrahim, A.A., Mohamed, A., Shareef, H., Ghoshal, S.P.: An effective power quality monitor placement method utilizing quantum-inspired particle swarm optimization. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6. IEEE (2011)Google Scholar
  91. 91.
    Yao, F., Dong, Z.Y., Meng, K., Xu, Z., Iu, H.H.-C., Wong, K.P.: Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in australia. IEEE Trans. Ind. Inform. 8(4), 880–888 (2012)CrossRefGoogle Scholar
  92. 92.
    Badawy, R., Heßler, A., Albayrak, S., Hirsch, B., Yassine, A.: Quantum-inspired evolution for smart building energy management in future power networks. In: EngOpt2014, p. 226 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mahmoud Pesaran Hajiabbas
    • 1
  • Morteza Nazari-Heris
    • 1
  • Sajad Madadi
    • 1
  • Behnam Mohammadi-Ivatloo
    • 1
  1. 1.Smart Energy Systems Laboratory, Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations