SVD-DCT Based Medical Image Watermarking in NSCT Domain

  • Siddharth Singh
  • Rajiv Singh
  • Amit Kumar Singh
  • Tanveer J. Siddiqui
Part of the Studies in Big Data book series (SBD, volume 33)


Medical images are of high importance and patient data must be kept confidential. In this chapter, we discuss a new hybrid transform domain technique for medical image watermarking and provide a detailed analysis of existing image watermarking methods. The proposed method uses a combination of nonsubsampled contourlet transform (NSCT), discrete cosine transform (DCT) and singular value decomposition (SVD) to achieve high capacity, robustness and imperceptibility. This method is non blind which requires cover image in receiver to extract watermarked image. Cover and watermark images are pre-processed in order to ensure accurate extraction of watermark. In this approach, we have considered medical images as cover and electronic patient record (EPR) is used as secret message. EPR message is embedded into selected sub band of cover image with selected gain factor so that there should be a good trade off among imperceptibility, robustness and capacity. NSCT increases hiding capacity and is more resistant to geometrical attacks. The combination of NSCT with DCT and SVD enhanced the perceptual quality and security of watermarked image. Experimental demonstration proved that the proposed method provides high robustness against geometrical and signal processing attacks in terms of peak signal to noise ratio (PSNR) and correlation coefficient (CC).


Medical image watermarking Nonsubsampled contourlet transform Discrete cosine transform Singular value decomposition Transform domain image watermarking 


  1. 1.
    Potdar, V.M., Han, S., Chang, E.: A survey of digital image watermarking techniques. In: 2005 3rd IEEE International Conference on Industrial Informatics, INDIN’05, pp. 709–716. IEEE (2005)Google Scholar
  2. 2.
    Lin, S.D., Chen, C.F.: A robust DCT-based watermarking for copyright protection. IEEE Trans. Consum. Electron. 46(3), 415–421 (2000)CrossRefGoogle Scholar
  3. 3.
    Lu, C.S., Liao, H.Y.: Multipurpose watermarking for image authentication and protection. IEEE Trans. Image Process. 10(10), 1579–1592 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Qi, X., Xin, X.: A quantization-based semi-fragile watermarking scheme for image content authentication. J. Vis. Commun. Image Represent. 22(2), 187–200 (2011)CrossRefGoogle Scholar
  5. 5.
    Liu, R., Tan, T.: An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimedia 4(1), 121–128 (2002)CrossRefGoogle Scholar
  6. 6.
    Celik, M.U., Sharma, G., Saber, E., Tekalp, A.M.: Hierarchical watermarking for secure image authentication with localization. IEEE Trans. Image Process. 11(6), 585–595 (2002)CrossRefGoogle Scholar
  7. 7.
    Cao, F., Huang, H.K., Zhou, X.Q.: Medical image security in a HIPAA mandated PACS environment. Comput. Med. Imaging Graph. 27(2), 185–196 (2003)CrossRefGoogle Scholar
  8. 8.
    Roy, S., Pal, A.K.: A robust blind hybrid image watermarking scheme in RDWT-DCT domain using Arnold scrambling. Multimedia Tools Appl. 1–40 (2016)Google Scholar
  9. 9.
    Ulutas, M., Ulutas, G., Nabiyev, V.V.: Medical image security and EPR hiding using Shamir’s secret sharing scheme. J. Syst. Softw. 84(3), 341–353 (2011)CrossRefGoogle Scholar
  10. 10.
    Sreenivas, K., Prasad, V.K.: Fragile watermarking schemes for image authentication: a survey. Int. J. Mach. Learn. Cybern. 1–26 (2017)Google Scholar
  11. 11.
    Zheng, D., Liu, Y., Zhao, J., Saddik, A.E.: A survey of RST invariant image watermarking algorithms. ACM Comput. Surv. (CSUR) 39(2), 5 (2007)CrossRefGoogle Scholar
  12. 12.
    Meerwald, P., Uhl, A.: Survey of wavelet-domain watermarking algorithms. In: Photonics West 2001—Electronic Imaging, pp. 505–516. International Society for Optics and Photonics (2001)Google Scholar
  13. 13.
    Mousavi, S.M., Naghsh, A., Abu-Bakar, S.A.R.: Watermarking techniques used in medical images: a survey. J. Digital Imaging 27(6), 714–729 (2014)Google Scholar
  14. 14.
    Al-Dmour, H., Al-Ani, A.: a medical image steganography method based on integer wavelet transform and overlapping edge detection. In: Neural Information Processing, pp. 436–444. Springer International Publishing (2015)Google Scholar
  15. 15.
    Navas, K.A., et al.: Lossless watermarking in JPEG2000 for EPR data hiding. In: 2007 IEEE International Conference on Electro/Information Technology (2007)Google Scholar
  16. 16.
    Singh, A.K., Dave, M., Mohan, A.: Hybrid technique for robust and imperceptible image watermarking in DWT–DCT–SVD domain. Natl. Acad. Sci. Lett. 37(4), 351–358 (2014)Google Scholar
  17. 17.
    Rahimi, F., Rabbani, H.: A dual adaptive watermarking scheme in contourlet domain for DICOM images. Biomed. Eng. Online 10(1), 53 (2011)CrossRefGoogle Scholar
  18. 18.
    Singh, S., Rathore, V.S., Singh, R., Singh, M.K.: Hybrid semi-blind image watermarking in redundant wavelet domain. Multimedia Tools Appl. 1–25 (2017)Google Scholar
  19. 19.
    Singh, S., Rathore, V.S., Singh, R.: Hybrid NSCT domain multiple watermarking for medical images. Multimedia Tools Appl. 1–19 (2016)Google Scholar
  20. 20.
    Singh, A.K., Dave, M., Mohan, A.: Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimedia Tools Appl. 75(14), 8381–8401 (2016)CrossRefGoogle Scholar
  21. 21.
    Rosiyadi, D., et al.: A comparison between the hybrid using genetic algorithm and the pure hybrid watermarking scheme. Int. J. Comput. Theory Eng. 4(3), 329 (2012)Google Scholar
  22. 22.
    Srivastava, A., Saxena, P.: DWT–DCT–SVD based semiblind image watermarking using middle frequency band. IOSR J. Comput. Eng. 12(2), 63–66 (2013)Google Scholar
  23. 23.
    Tayal, A., Singh, A.: Choice of wavelet from wavelet families for DWT-DCT-SVD image watermarking. Choice 48(17) (2012)Google Scholar
  24. 24.
    Su, Q., Chen, B.: Robust color image watermarking technique in the spatial domain. Soft Comput. 1–16 (2017)Google Scholar
  25. 25.
    Pandey, R., Singh, A.K., Kumar, B., Mohan, A.: Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimedia Tools Appl. 75(22), 14381–14397 (2016)CrossRefGoogle Scholar
  26. 26.
    Zarmehi, N., Aref, M.R.: Optimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling. ISC Int. J. Inf. Secur. 8(2), 127–135 (2016)Google Scholar
  27. 27.
    Santhi, V.: Adaptive color image watermarking scheme using weibull distribution. In: Intelligent Techniques in Signal Processing for Multimedia Security, pp. 453–468. Springer International Publishing (2017)Google Scholar
  28. 28.
    Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen. IEEE Comput. 31(2), 26–34 (1998)CrossRefGoogle Scholar
  29. 29.
    Niimi, M., Noda, H., Kawaguchi, E.: A steganography based on region segmentation by using complexity measure. Trans. IEICE J81-D-II, 1132–1140 (1998)Google Scholar
  30. 30.
    Potdar, V.M., Chang, E.: Grey level modification steganography for secret communication. In: 2004 2nd IEEE International Conference on Industrial Informatics, INDIN’04, pp. 223–228. IEEE (2004)Google Scholar
  31. 31.
    Wu, D.C., Tsai, W.H.: A steganographic method for images by pixel-value differencing. Pattern Recogn. Lett. 24(9), 1613–1626 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Yang, C.H., Weng, C.Y., Tso, H.K., Wang, S.J.: A data hiding scheme using the varieties of pixel-value differencing in multimedia images. J. Syst. Softw. 84(4), 669–678 (2011)CrossRefGoogle Scholar
  33. 33.
    Lee, Y.P., Lee, J.C., Chen, W.K., Chang, K.C., Su, J., Chang, C.P.: High-payload image hiding with quality recovery using tri-way pixel-value differencing. Inf. Sci. 191, 214–225 (2012)CrossRefGoogle Scholar
  34. 34.
    Liao, X., Wen, Q.Y., Zhang, J.: A steganographic method for digital images with four-pixel differencing and modified LSB substitution. J. Vis. Commun. Image Represent. 22(1), 1–8 (2011)CrossRefGoogle Scholar
  35. 35.
    Provos, N., Honeyman, P.: Detecting steganography content on the internet. CITI Technical Report, pp. 01–11 (2011)Google Scholar
  36. 36.
    Singh, S., Siddiqui, T.J.: Transform domain techniques for image steganography. Inf. Secur. Diverse Comput. Environ. 245–259 (2014)Google Scholar
  37. 37.
    Koch, E., Zhao, J.: Towards robust and hidden image copyright labeling. In: Proceeding of IEEE Workshop on Nonlinear Signal and Image Processing, Thessaloniki, Greece, pp. 452–455 (1995)Google Scholar
  38. 38.
    Cox, I.J., Miller, M.L.: U.S. Patent No. 6,108,434. Washington, DC: U.S. Patent and Trademark Office (2000)Google Scholar
  39. 39.
    Upham, D.: JPEG–Jsteg.
  40. 40.
    Provos, N.: Defending against statistical steganalysis. In: Proceedings of Tenth USENIX Security Symposium’01, pp. 323–335. Washington, DC (2001)Google Scholar
  41. 41.
    Westfeld, A.: F5-a steganographic algorithm: high capacity despite better steganlysis. In: Lecture Notes in Computer Science, vol. 2137, pp. 259–302. Springer, Berlin (2001)Google Scholar
  42. 42.
    Fan, L., Gao, T., Yang, Q., Cao, Y.: An extended matrix encoding algorithm for steganography of high embedding efficiency. Comput. Electr. Eng. 37(6), 973–981 (2011)CrossRefGoogle Scholar
  43. 43.
    Barni, M., Bartolini, F., Cappellini, V., Piva, A.: A DCT domain system for robust image watermarking. Signal Processing. In: European Association for Signal Processing (EURASIP), vol. 66(3) pp. 357–372 (1998)Google Scholar
  44. 44.
    Hernandez, J.R., Amado, M., Perez-Gonzalez, F.: DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans. Image Process. 9(1), 55–68 (2000)CrossRefGoogle Scholar
  45. 45.
    Briassouli, A., Tsakalides, P., Stouraitis, A.: Hidden messages in heavy-tails: DCT-domain watermark detection using alpha-stable models. IEEE Trans. Multimedia 7(4), 700–715 (2005)CrossRefGoogle Scholar
  46. 46.
    Amin, P.K. Liu, N., Subbalakshmi, K.P.: Statistically secure digital image data hiding. In: Proceedings of the IEEE 7th Workshop on Multimedia Signal Processing, Shanghai, pp. 1–4 (2005)Google Scholar
  47. 47.
    Noda, H., Niimi, M., Kawaguchi, E.: High-performance JPEG steganography using quantization index modulation in DCT domain. Pattern Recogn. Lett. 27(5), 455–461 (2006)CrossRefGoogle Scholar
  48. 48.
    Wong, K., Qi, X., Tanaka, K.: A DCT-based Mod4 steganographic method. Sig. Process. 87(6), 1251–1263 (2007)CrossRefMATHGoogle Scholar
  49. 49.
    Chang, C.C., Lin, C.C., Tseng, C.S., Tai, W.L.: Reversible hiding in DCT-based compressed images. Inf. Sci. 177(13), 2768–2786 (2007)CrossRefGoogle Scholar
  50. 50.
    Lin, S.D., Shie, S.C., Guo, J.Y.: Improving the robustness of DCT-based image watermarking against JPEG compression. Comput. Stand. Interfaces 32(1), 54–60 (2010)CrossRefGoogle Scholar
  51. 51.
    Singh, H.V., Rai, S., Mohan, A., Singh, S.P.: Robust copyright marking using weibull distribution. Comput. Electr. Eng. 37(5), 714–728 (2011)CrossRefGoogle Scholar
  52. 52.
    Mali, S.N., Patil, P.M., Jalnekar, R.M.: Robust and secured image-adaptive data hiding. Digit. Signal Proc. 22(2), 314–323 (2012)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Abdelwahab, A.A., Hassaan, L.A.: A discrete wavelet transform based technique for image data hiding. In: 2008 National Radio Science Conference, NRSC 2008, pp. 1–9. IEEE, March 2008Google Scholar
  54. 54.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 10(5), 783–791 (2001)CrossRefMATHGoogle Scholar
  55. 55.
    Kundur, D., Hatzinakos, D.: Toward robust logo watermarking using multiresolution image fusion principles. IEEE Trans. Multimedia 6(1), 185–198 (2004)CrossRefGoogle Scholar
  56. 56.
    Kamstra, L., Heijmans, H.J.: Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans. Image Process. 14(12), 2082–2090 (2005)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Liu, J.L., Lou, D.C., Chang, M.C., Tso, H.K.: A robust watermarking scheme using self-reference image. Comput. Stan. Interfaces 28(3), 356–367 (2006)CrossRefGoogle Scholar
  58. 58.
    Ghouti, L., Bouridane, A., Ibrahim, M.K., Boussakta, S.: Digital image watermarking using balanced multiwavelets. IEEE Trans. Signal Process. 54(4), 1519–1536 (2006)CrossRefGoogle Scholar
  59. 59.
    Lee, S., Yoo, C.D., Kalker, T.: Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf. Forensics Secur. 2(3), 321–330 (2007)CrossRefGoogle Scholar
  60. 60.
    Peng, F., Li, X., Yang, B.: Adaptive reversible data hiding scheme based on integer transform. Sig. Process. 92(1), 54–62 (2012)CrossRefGoogle Scholar
  61. 61.
    Lin, W.H., Horng, S.J., Kao, T.W., Fan, P., Lee, C.L., Pan, Y.: An efficient watermarking method based on significant difference of wavelet coefficient quantization. IEEE Trans. Multimedia 10(5), 746–757 (2008)CrossRefGoogle Scholar
  62. 62.
    Chan, Y.K., Chen, W.T., Yu, S.S., Ho, Y.A., Tsai, C.S., Chu, Y.P.: A HDWT-based reversible data hiding method. J. Syst. Softw. 82(3), 411–421 (2009)CrossRefGoogle Scholar
  63. 63.
    Bhatnagar, G., Jonathan, Wu, Q.M., Raman, B.: Robust gray-scale logo watermarking in wavelet domain. Comput. Electr. Eng. 38(5), 1164–1176 (2012)Google Scholar
  64. 64.
    Yeh, H.L., Gue, S.T., Tsai, P., Shih, W.K.: Wavelet bit-plane based data hiding for compressed images. AEU-Int. J. Electr. Commun. (2013)Google Scholar
  65. 65.
    Sajedi, H., Jamzad, M.: ContSteg: contourlet-based steganography method. J. Wireless Sens. Netw. 1(3), 163–170 (2009)Google Scholar
  66. 66.
    Sajedi, H., Jamzad, M.: Using contourlet transform and cover selection for secure steganography. Int. J. Inf. Secur. 9(5), 337–352 (2010)CrossRefGoogle Scholar
  67. 67.
    Khalighi, S., Tirdad, P., Rabiee, H.R.: A contourlet-based image watermarking scheme with high resistance to removal and geometrical attacks. EURASIP J. Adv. Signal Proces. 21 (2010)Google Scholar
  68. 68.
    Leung, H.Y., Cheng, L.M., Cheng, L.L.: Robust watermarking schemes using selective curvelet coefficients based on a HVS model. Int. J. Wavelets Multiresolut. Inf. Process. 8(06), 941–959 (2010)CrossRefMATHGoogle Scholar
  69. 69.
    Bhatnagar, G., Wu, Q.J.: Biometrics inspired watermarking based on a fractional dual tree complex wavelet transform. Future Gener. Comput. Syst. 29(1), 182–195 (2013)CrossRefGoogle Scholar
  70. 70.
    Mansouri, A., Aznaveh, A.M., Azar, F.T.: SVD-based digital image watermarking using complex wavelet transform. Sadhana 34(3), 393–406 (2009)CrossRefGoogle Scholar
  71. 71.
    Shieh, C.S., Huang, H.C., Wang, F.H., Pan, J.S.: Genetic watermarking based on transform-domain techniques. Pattern Recogn. 37(3), 555–565 (2004)CrossRefGoogle Scholar
  72. 72.
    Li, X., Wang, J.: A steganographic method based upon JPEG and particle swarm optimization algorithm. Inf. Sci. 177(15), 3099–3109 (2007)CrossRefGoogle Scholar
  73. 73.
    Ishtiaq, M., Sikandar, B., Jaffar, M.A., Khan, A.: Adaptive watermark strength selection using particle swarm optimization. ICIC Express Lett. Int. J. Res. Surv. 4(6) (2010)Google Scholar
  74. 74.
    Wang, Y.R., Lin, W.H., Yang, L.: An intelligent watermarking method based on particle swarm optimization. Expert Syst. Appl. 38(7), 8024–8029 (2011)CrossRefGoogle Scholar
  75. 75.
    Sallee, P.: Model-based steganography. In: Digital Watermarking, pp. 154–167. Springer, Berlin (2004)Google Scholar
  76. 76.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefGoogle Scholar
  77. 77.
    Da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)Google Scholar
  78. 78.
    Chen, J., Lin, P.: A reliable enhanced watermarking based on NSCT and SVD. Adv. Inf. Sci. Ser. Sci. 5(5), 629 (2013)Google Scholar
  79. 79.
    Narasimhulu, C.V., Prasad, K.S.: A robust watermarking technique based on nonsubsampled contourlet transform and SVD. Int. J. Comput. Appl. 16(8) (2011)Google Scholar
  80. 80.
    Singh, S., Siddiqui, T.J.: A security enhanced robust steganography algorithm for data hiding. Int. J. Comput. Sci. Issues 9(1), 131–139 (2012)Google Scholar
  81. 81.
    Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J. 27(1), 2–23 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Siddharth Singh
    • 1
  • Rajiv Singh
    • 2
  • Amit Kumar Singh
    • 3
  • Tanveer J. Siddiqui
    • 4
  1. 1.Department of Electronics and Communication EngineeringV. B. S. Purvanchal UniversityJaunpurIndia
  2. 2.Department of Computer ScienceBanasthali UniversityBanasthaliIndia
  3. 3.Department of Computer Science and EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia
  4. 4.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations