Applications of Quantum Mechanics in Secure Communication

  • Mosayeb Naseri
  • Negin Fatahi
  • Ahmed Farouk
  • O. Tarawneh
  • M. Elhoseny
Part of the Studies in Big Data book series (SBD, volume 33)


Over the last half century, the components of computers have become smaller by a factor of two every 18 months, a phenomenon known as Moore’s law. In state-of-the-art computers, the smallest wires and transistors are approaching 100 nm feature size, which is approximately 1000x the diameter of an atom. Quantum mechanics is the theory of physics that describes the behavior of matter and energy in extreme conditions, such as short times and tiny distances. As transistors and wires become smaller and smaller, they inevitably begin to behave in intrinsically quantum mechanical ways. In this chapter it will be shown how it can be possible by using simple principles of quantum mechanics to reach a new field of communication science, named quantum communication. Also, the most recent development in quantum secure communication will be introduced and finally, the new method of secure dialogue between two agents (Alice, Bob), with the help of measurement concept in quantum mechanics will be presented.


Quantum effect Entanglement No cloning Quantum cryptography Quantum teleportation 


  1. 1.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of point to multipoint QKD communication systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, pp. NW 25–31. IEEE (2012)Google Scholar
  2. 2.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp. 38–47. The Society of Digital Information and Wireless Communication (2015)Google Scholar
  3. 3.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080–16080 (2014)Google Scholar
  4. 4.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  6. 6.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  7. 7.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv:1704.00005
  8. 8.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  9. 9.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  10. 10.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C 4 H 4 N 2) (NO 3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  11. 11.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  12. 12.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  13. 13.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  14. 14.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021. IGI Global (2017)Google Scholar
  15. 15.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  16. 16.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  17. 17.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of Bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  18. 18.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar
  23. 23.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computer Systems and Signal Processing, vol. 175, Bangalore, 1984Google Scholar
  24. 24.
    Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85, 441 (2000)CrossRefGoogle Scholar
  26. 26.
    Lutkenhaus, N.: Phys. Rev. A 61, 052304 (2000)CrossRefGoogle Scholar
  27. 27.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum, mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)CrossRefMATHGoogle Scholar
  28. 28.
    Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs (1951)Google Scholar
  29. 29.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Walker, J.G., Seward, S.F., Rarity, J.G., Tapster, P.R.: Quantum Opt. 1,75–82 (1989)Google Scholar
  31. 31.
    Seward, S.F., Tapster, P.R., Walker, J.G., Rarity, J.G.: Quantum Opt. 3, 201–207 (1991)CrossRefGoogle Scholar
  32. 32.
    Buttler, W.T., et al.: Phys. Rev. A 57, 2379–2382 (1998)CrossRefGoogle Scholar
  33. 33.
    Primmerman, C.A., et al.: Nature 353, 141–143 (1991)CrossRefGoogle Scholar
  34. 34.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A.: Capacities of quantum erasure channels. arXiv:quant-ph/9701015
  35. 35.
    Buttler, W.T., Hughes, R.J., Kwiat, P.G., Lamoreaux, S.K., Luther, G.G., Morgan, G.L., Nordholt, J.E., Peterson, C.G., Simmons, C.M.: Practical free-space quantum key distribution over 1 km. arXiv:quant-ph/9805071
  36. 36.
    Bacsardi, L.: Using quantum computing algorithms in future satellite communication. Acta Astronautica 57(28), 224229 (2005)Google Scholar
  37. 37.
    Bacsardi, L.: Satellite communication over quantum channel. Acta Astronautica 61, 151–159 (2007). Gschwindt, A.: Satellite broadcast, in Hungarian, Muszaki Konyvkiado, Budapest (1997)Google Scholar
  38. 38.
    Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4, 82 (2002)Google Scholar
  39. 39.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley Publication Company (1985)Google Scholar
  40. 40.
    Nielson Michael, A., Chuang Hsaac, L.: Quantum Information and Computation. Cambridge University Press (2000)Google Scholar
  41. 41.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Phys. Rev. A 72, 044301 (2005)CrossRefGoogle Scholar
  42. 42.
    Bell, J.S.: Physics 1, 195–200 (1964)Google Scholar
  43. 43.
    Johns, W.: Quantum Teleportation; Deutsch’s Algorithm. Lecture Notes. University of Calgary (2006)Google Scholar
  44. 44.
    Cirac, J.I. et al.: Phys. Rev. Lett. 78, 3221 (1997); Van Enk, S.J., Cirac, J.I., Zoller, P.: Science 279, 205 (1998)Google Scholar
  45. 45.
    Bennett, C.H., et al.: Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Bennett, Charles H., Gilles, B.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179, December 10–12, 1984Google Scholar
  47. 47.
    Phoenix, S.J., Townsend, P.D.: Quantum cryptography: how to beat the code breakers using quantum mechanics. Contemp. Phys. 36(3), 165–195 (1995)CrossRefGoogle Scholar
  48. 48.
    Townsend, P.D.: Secure key distribution system based on quantum cryptography. Electron Lett. 30(10), 809–811 (1994)Google Scholar
  49. 49.
    Lomonaco, Jr. S.J.: A Quick Glance at Quantum Cryptography. arXiv:quant-ph/9811056
  50. 50.
    Gui-In, L., et al.: Front. Phys. China 2(3): 252–273 (2007)Google Scholar
  51. 51.
    Shimizu, K., Imoto, N.: Phys. Rev. A 60, 157 (1999)CrossRefGoogle Scholar
  52. 52.
    Beige, A., Englert, B.G., Kurtsiefer, C.: Acta Phys. Pol. 101(3), 357 (2002)Google Scholar
  53. 53.
    Bostrom, K., Felbinger, T.: Phys. Rev. Lett. 89, 187902 (2002)CrossRefGoogle Scholar
  54. 54.
    Wojcik, A.: Phys. Rev. Lett. 90, 157901 (2003)CrossRefGoogle Scholar
  55. 55.
    Long, G.l., Liv, X.S.: Phys. Rev. A 65, 032302 (2002)Google Scholar
  56. 56.
    Deng, F.G., Long, G.l., Liv, X.S.: Phys. Rev. A 68, 042317 (2003)Google Scholar
  57. 57.
    Shannon, C.E., Weaver, W.: A more complete analysis of the communication problem can be found. In: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1963)Google Scholar
  58. 58.
    Fu-Guo, D., Xi-Han, L., Chun-Yan, L., Ping, Z., Hong-Yu, Z.: Phys. Scr. 76, 25–30 (2007)CrossRefGoogle Scholar
  59. 59.
    Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mosayeb Naseri
    • 1
  • Negin Fatahi
    • 1
  • Ahmed Farouk
    • 2
    • 3
  • O. Tarawneh
    • 3
  • M. Elhoseny
    • 2
  1. 1.Department of PhysicsIslamic Azad UniversityKermanshahIran
  2. 2.Faculty of Computer and Information SciencesMansoura UniversityMansouraEgypt
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman

Personalised recommendations