Optimal Distributed Generation Allocation Using Quantum Inspired Particle Swarm Optimization

  • Morteza Nazari-Heris
  • Sajad Madadi
  • Mahmoud Pesaran Hajiabbas
  • Behnam Mohammadi-Ivatloo
Part of the Studies in Big Data book series (SBD, volume 33)


Distributed Generation (DG), with respect to its ability in utilizing the alternative resources of energy, provides a promising future for power generation in electrical networks. Distributed generators contribution to the power systems includes improvement in energy efficiency and power quality to reliability and security. These benefits are only achievable with optimal allocation of distributed resources that considers the objective function, constraints, and employs a suitable optimization algorithm. In this chapter, a quantum inspired computational intelligence is exercised for the optimal allocation of distributed generators. The fact that most of power system optimization problems, when modelled accurately, are of non-convex and sometimes discrete nature has encouraged many researchers to develop optimization techniques to overcome such difficulties. The basic Particle Swarm Optimization (PSO) is one of the most favored optimization techniques with many attractive features. Early experiments of employing PSO in many applications in power systems have indicated its promising potential. Consequently, the more advanced alternatives of this algorithm such as Quantum behaved PSO (Q-PSO) may show the same or even better performance in power system problems. The aforementioned algorithm has already been employed for different optimization objectives in power systems such as: short-term non-convex economic scheduling, unit commitment problems, loss of power minimization, economic load dispatch, smart building energy management and power system operations. Nevertheless, the algorithm has never been used for optimal allocation of distributed generation units. In this chapter the above problem will be solved with a quantum behaved particle swarm optimization algorithm. The chapter will be started with an introduction to the optimal allocation of DG then the power system, including the DG units will be modeled. On the next step the Q-PSO will be adopted for the optimal allocation. Finally, the results and discussions will be presented.


Particle swarm optimization (PSO) Quantum inspired PSO Optimization problem Distributed generation (DG) 


  1. 1.
    Ackermann, T., Andersson, G., Söder, L.: Distributed generation: a definition. Electr. Power Syst. Res. 57(3), 195–204 (2001)CrossRefGoogle Scholar
  2. 2.
    Chiradeja, P., Ramakumar, R.: An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Convers. 19(4), 764–773 (2004)CrossRefGoogle Scholar
  3. 3.
    El-Khattam, W., Salama, M.M.: Distributed generation technologies, definitions and benefits. Electr. Power Syst. Res. 71(2), 119–128 (2004)CrossRefGoogle Scholar
  4. 4.
    Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., Dhaeseleer, W.: Distributed generation: definition, benefits and issues. Energy Policy 33(6), 787–798 (2005)CrossRefGoogle Scholar
  5. 5.
    Hung, D.Q., Mithulananthan, N., Bansal, R.: An optimal investment planning framework for multiple distributed generation units in industrial distribution systems. Appl. Energy 124, 62–72 (2014)CrossRefGoogle Scholar
  6. 6.
    HA, M.P., Huy, P.D., Ramachandaramurthy, V.K.: A review of the optimal allocation of distributed generation: objectives, constraints, methods, and algorithms. Renew. Sustain. Energy Rev. (2016)Google Scholar
  7. 7.
    Walling, R., Saint, R., Dugan, R.C., Burke, J., Kojovic, L.A.: Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 23(3), 1636–1644 (2008)CrossRefGoogle Scholar
  8. 8.
    Ault, G.W., McDonald, J.R.: Planning for distributed generation within distribution networks in restructured electricity markets. IEEE Power Eng. Rev. 20(2), 52–54 (2000)CrossRefGoogle Scholar
  9. 9.
    Dugan, R.C., McDermott, T.E., Ball, G.J.: Planning for distributed generation. IEEE Ind. Appl. Mag. 7(2), 80–88 (2001)CrossRefGoogle Scholar
  10. 10.
    Rau, N.S., Wan, Y.-H.: Optimum location of resources in distributed planning. IEEE Trans. Power Syst. 9(4), 2014–2020 (1994)CrossRefGoogle Scholar
  11. 11.
    Padma Lalitha, M., Veera Reddy, V., Sivarami Reddy, N.: Application of fuzzy and abc algorithm for dg placement for minimum loss in radial distribution system. Iran. J. Electr. Electron. Eng. 6(4), 248–257 (2010)Google Scholar
  12. 12.
    Popović, D., Greatbanks, J., Begović, M., Pregelj, A.: Placement of distributed generators and reclosers for distribution network security and reliability. Int. J. Electr. Power Energy Syst. 27(5), 398–408 (2005)CrossRefGoogle Scholar
  13. 13.
    Ochoa, L.F., Dent, C.J., Harrison, G.P.: Distribution network capacity assessment: variable dg and active networks. IEEE Trans. Power Syst. 25(1), 87–95 (2010)CrossRefGoogle Scholar
  14. 14.
    Dent, C.J., Ochoa, L.F., Harrison, G.P., Bialek, J.W.: Efficient secure ac opf for network generation capacity assessment. IEEE Trans. Power Syst. 25(1), 575–583 (2010)CrossRefGoogle Scholar
  15. 15.
    Kumar, A., Gao, W.: Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets. IET Gener. Trans. Distrib. 4(2), 281–298 (2010)CrossRefGoogle Scholar
  16. 16.
    López-Lezama, J.M., Padilha-Feltrin, A., Contreras, J., Muñoz, J.I.: Optimal contract pricing of distributed generation in distribution networks. IEEE Trans. Power Syst. 26(1), 128–136 (2011)CrossRefGoogle Scholar
  17. 17.
    Ghosh, S., Ghoshal, S.P., Ghosh, S.: Optimal sizing and placement of distributed generation in a network system. Int. J. Electr. Power Energy Syst. 32(8), 849–856 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, D.T.-C., Ochoa, L.F., Harrison, G.P.: Dg impact on investment deferral: network planning and security of supply. IEEE Trans. Power Syst. 25(2), 1134–1141 (2010)CrossRefGoogle Scholar
  19. 19.
    Atwa, Y., El-Saadany, E., Salama, M., Seethapathy, R.: Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–370 (2010)CrossRefGoogle Scholar
  20. 20.
    Khodr, H., Silva, M.R., Vale, Z., Ramos, C.: A probabilistic methodology for distributed generation location in isolated electrical service area. Electr. Power Syst. Res. 80(4), 390–399 (2010)CrossRefGoogle Scholar
  21. 21.
    Dent, C.J., Ochoa, L.F., Harrison, G.P.: Network distributed generation capacity analysis using opf with voltage step constraints. IEEE Trans. Power Syst. 25(1), 296–304 (2010)CrossRefGoogle Scholar
  22. 22.
    Keane, A., O’Malley, M.: Optimal allocation of embedded generation on distribution networks. IEEE Trans. Power Syst. 20(3), 1640–1646 (2005)CrossRefGoogle Scholar
  23. 23.
    Kim, J., Nam, S., Park, S., Singh, C.: Dispersed generation planning using improved hereford ranch algorithm. Electr. Power Syst. Res. 47(1), 47–55 (1998)CrossRefGoogle Scholar
  24. 24.
    Gandomkar, M., Vakilian, M., Ehsan, M.: A combination of genetic algorithm and simulated annealing for optimal dg allocation in distribution networks. In: Canadian Conference on Electrical and Computer Engineering, 2005, pp. 645–648. IEEE (2005)Google Scholar
  25. 25.
    Acharya, N., Mahat, P., Mithulananthan, N.: An analytical approach for dg allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 28(10), 669–678 (2006)CrossRefGoogle Scholar
  26. 26.
    Murty, V., Kumar, A.: Optimal placement of dg in radial distribution systems based on new voltage stability index under load growth. Int. J. Electr. Power Energy Syst. 69, 246–256 (2015)CrossRefGoogle Scholar
  27. 27.
    Borges, C.L., Falcao, D.M.: Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J. Electr. Power Energy Syst. 28(6), 413–420 (2006)CrossRefGoogle Scholar
  28. 28.
    Vatani, M., Alkaran, D.S., Sanjari, M.J., Gharehpetian, G.B.: Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods. IET Gener. Transm. Distrib. 10(1), 66–72 (2016)CrossRefGoogle Scholar
  29. 29.
    Nguyen, T.T., Truong, A.V., Phung, T.A.: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. Int. J. Electr. Power Energy Syst. 78, 801–815 (2016)CrossRefGoogle Scholar
  30. 30.
    Kowsalya, M., et al.: Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 15, 58–65 (2014)CrossRefGoogle Scholar
  31. 31.
    Pesaran, M., Mohd Zin, A.A., Khairuddin, A., Shariati, O.: Optimal sizing and siting of distributed generators by a weighted exhaustive search. Electr. Power Compon. Syst. 42(11), 1131–1142 (2014)CrossRefGoogle Scholar
  32. 32.
    Nazari-Heris, M., Mohammadi-Ivatloo, B.: Application of heuristic algorithms to optimal pmu placement in electric power systems: An updated review. Renew. Sustain. Energy Rev. 50, 214–228 (2015)CrossRefGoogle Scholar
  33. 33.
    Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G.: Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: a comprehensive review. Renew. Sustain. Energy Rev. 74, 116–129 (2017)CrossRefGoogle Scholar
  34. 34.
    Mahdi, F.P., Vasant, P., Rahman, M.M., Abdullah-Al-Wadud, M., Watada, J., Kallimani, V.: Quantum particle swarm optimization for multiobjective combined economic emission dispatch problem using cubic criterion function. In: 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–5. IEEE (2017)Google Scholar
  35. 35.
    Mohammadi-Ivatloo, B., Moradi-Dalvand, M., Rabiee, A.: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. Electr. Power Syst. Res. 95, 9–18 (2013)CrossRefGoogle Scholar
  36. 36.
    Yuan, X., Wang, L., Yuan, Y.: Application of enhanced pso approach to optimal scheduling of hydro system. Energy Convers. Manag. 49(11), 2966–2972 (2008)CrossRefGoogle Scholar
  37. 37.
    Yare, Y., Venayagamoorthy, G.K., Aliyu, U.: Optimal generator maintenance scheduling using a modified discrete pso. IET Gener. Transm. Distrib. 2(6), 834–846 (2008)CrossRefGoogle Scholar
  38. 38.
    Mohammadi, M., Hosseinian, S., Gharehpetian, G.: Optimization of hybrid solar energy sources/wind turbine systems integrated to utility grids as microgrid (mg) under pool/bilateral/hybrid electricity market using pso. Solar Energy 86(1), 112–125 (2012)CrossRefGoogle Scholar
  39. 39.
    Yu, X.-M., Xiong, X.-Y., Wu, Y.-W.: A pso-based approach to optimal capacitor placement with harmonic distortion consideration. Electr. Power Syst. Res. 71(1), 27–33 (2004)CrossRefGoogle Scholar
  40. 40.
    Krueasuk, W., Ongsakul, W.: Optimal placement of distributed generation using particle swarm optimization. In: Proceedings of Power Engineering Conference in Australasian Universities, Australia. Citeseer (2006)Google Scholar
  41. 41.
    Moradi, A., Fotuhi-Firuzabad, M.: Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans. Power Deliv. 23(1), 271–279 (2008)CrossRefGoogle Scholar
  42. 42.
    Saravanan, M., Slochanal, S.M.R., Venkatesh, P., Abraham, P.S.: Application of pso technique for optimal location of facts devices considering system loadability and cost of installation. In: The 7th International Power Engineering Conference, IPEC 2005, pp. 716–721. IEEE (2005)Google Scholar
  43. 43.
    Zhao, B., Guo, C., Cao, Y.: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Trans. Power Syst. 20(2), 1070–1078 (2005)CrossRefGoogle Scholar
  44. 44.
    Moghaddas Tafreshi, S., Hakimi, S.: Optimal sizing of a stand-alone hybrid power system via particle swarm optimization (pso). In: International Power Engineering Conference, IPEC 2007, pp. 960–965. IEEE (2007)Google Scholar
  45. 45.
    Al-Kazemi, B., Mohan, C.: Discrete multi-phase particle swarm optimization. In: Information Processing with Evolutionary Algorithms, pp. 305–327. Springer (2005)Google Scholar
  46. 46.
    Yang, S., Wang, M.: A quantum particle swarm optimization. In: Congress on Evolutionary Computation, et al.: CEC2004, vol. 1, pp. 320–324. IEEE (2004)Google Scholar
  47. 47.
    Moore, P., Venayagamoorthy, G.K.: Evolving combinational logic circuits using a hybrid quantum evolution and particle swarm inspired algorithm. In: 2005 NASA/DoD Conference on Evolvable Hardware, 2005, pp. 97–102. Proceedings. IEEE (2005)Google Scholar
  48. 48.
    Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Congress on Evolutionary Computation, CEC2004, vol. 1, pp. 325–331. IEEE (2004)Google Scholar
  49. 49.
    Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116. IEEE (2004)Google Scholar
  50. 50.
    Sun, J., Lai, C.-H., Wu, X.-J.: Particle Swarm Optimisation: Classical and Quantum Perspectives. CRC Press (2011)Google Scholar
  51. 51.
    Lu, S., Sun, C., Lu, Z.: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Convers. Manag. 51(3), 561–571 (2010)MathSciNetCrossRefGoogle Scholar
  52. 52.
    dos Santos Coelho, L., Mariani, V.C.: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers. Manag. 49(11), 3080–3085 (2008)Google Scholar
  53. 53.
    Jeong, Y.-W., Park, J.-B., Jang, S.-H., Lee, K.Y.: A new quantum-inspired binary pso: application to unit commitment problems for power systems. IEEE Trans. Power Syst. 25(3), 1486–1495 (2010)CrossRefGoogle Scholar
  54. 54.
    Wang, J., Liu, Z., Lu, P.: Electricity load forecasting based on adaptive quantum-behaved particle swarm optimization and support vector machines on global level. In: International Symposium on Computational Intelligence and Design, ISCID’08, vol. 1, pp. 233–236. IEEE (2008)Google Scholar
  55. 55.
    Tian, S., Tuanjie, L.: Short-term load forecasting based on rbfnn and qpso. In: Power and Energy Engineering Conference, APPEEC 2009. Asia-Pacific. IEEE (2009)Google Scholar
  56. 56.
    Badawy, R., Heßler, A., Albayrak, S., Hirsch, B., Yassine, A.: Quantum-inspired evolution for smart building energy management in future power networks. In: EngOpt2014, p. 226 (2014)Google Scholar
  57. 57.
    Esmin, A.A., Lambert-Torres, G., De Souza, A.Z.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 20(2), 859–866 (2005)CrossRefGoogle Scholar
  58. 58.
    Ibrahim, A.A., Mohamed, A., Shareef, H., Ghoshal, S.P.: An effective power quality monitor placement method utilizing quantum-inspired particle swarm optimization. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6. IEEE (2011)Google Scholar
  59. 59.
    Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Appl. Math. Comput. 218(7), 3763–3775 (2011)MATHGoogle Scholar
  60. 60.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  61. 61.
    Metropolis, N., Ulam, S.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Morteza Nazari-Heris
    • 1
  • Sajad Madadi
    • 1
  • Mahmoud Pesaran Hajiabbas
    • 1
  • Behnam Mohammadi-Ivatloo
    • 1
  1. 1.Smart Energy Systems Laboratory, Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations