Morphogenetic Sources in Quantum, Neural and Wave Fields: Part 2

  • G. Resconi
  • K. Nagata
  • O. Tarawneh
  • Ahmed Farouk
Part of the Studies in Big Data book series (SBD, volume 33)


Neural network and quantum computer have the same conceptual structure similar to Huygens sources in the wave field generation. Any point of the space is a source with different intensity of waves that transport information in all the space where are superposed in a complex way to generate the wave field. In wave theory this sources are denoted Huygens sources. The morphogenetic field is the wave field generate by computed sources that are designed in a way to transform the original field in a wanted field to satisfy wanted property. The morphogenetic computation is this type of global computation by sources like Huygens sources that in parallel and synchronic way give us the designed field. So the intensity of the sources must be computed a priory before the morphogenetic effective computation in a way to have an entanglement of the sources that in the same time compute the field. If we cannot design the sources a priory and we want generate the field by a recursion process we enter easily in a deadlock state for which one source generate local wanted field that destroy the generation of another local field. So we have a contradiction between the action of different non entangled sources that cannot generate all the wanted field. In neural network we have the superposition of the input vectors in quantum mechanics we have the superposition of the states. In the neural network the intensity of the sources are the neural weights and the threshold. In quantum mechanics the intensity of the sources are the coefficients of the quantum states superposition. To design neural sources intensity (weights) we use the matrix of all possible inputs by which we can define all possible outputs. In the design neural network we cannot use the simple theory of input output but all the past or future input output are used. Space and time is not important in the design the network more important is to use the space of all possible input and output. The same in the quantum computer where we must design the unitary transformation for which only one wanted state coefficient is different from zero all the other coefficients are put to zero. In this way we can select among a huge possible states any one wanted state solution of our problem. In this scheme we include Deutsch problems, Berstein Varizani theorem and Nagata parallel function computing. The difference between quantum computer and neural network is that in quantum computer the basis is the oracle square matrix without any threshold and contradiction. In neural network the basis is a rectangular matrix of possible input with possible contradiction and threshold. So in neural network is necessary first to enlarge the basis in a way to solve with the minimum enlargement the contradiction and after use the threshold to reduce the complexity of the input basis. In the one step neural method we compute the parameters in one step as in quantum computer we use one query is used to generate the wanted result by a unitary matrix. To select wanted result in quantum computer and to obtain the wanted function in neural network, we use the projection operator method for non orthogonal states as oracle and inputs in quantum computer and neural network. Coker Specher theorem is revised in the light of the projection operator. In fact projection operator can select in a superposition one and only one element. Now when we have many basis with elements in common the local projection can enter in conflict with other connected basis projections. This put up in evidence that quantum computer and neural computer include contradiction or conflict. So before any computation we must solve the contradiction itself by the entangled projection method.


  1. 1.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Spec. Top. 223(8), 1711–1728 (2014)CrossRefGoogle Scholar
  2. 2.
    Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of point to multipoint QKD communication systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, pp. NW 25–31 (2012). IEEEGoogle Scholar
  3. 3.
    Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing, pp. 38–47 (2015). The Society of Digital Information and Wireless CommunicationGoogle Scholar
  4. 4.
    Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2014)Google Scholar
  5. 5.
    Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quantum Inf. Process. 14(11), 4211–4224 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik-Int. J. Light Electron Opt. 139, 77–86 (2017)CrossRefGoogle Scholar
  7. 7.
    Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)CrossRefGoogle Scholar
  8. 8.
    Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory (2017). arXiv preprint arXiv:1704.00005
  9. 9.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)CrossRefGoogle Scholar
  10. 10.
    Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)CrossRefGoogle Scholar
  11. 11.
    Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C 4 H 4 N 2) (NO 3) 2. Eur. Phys. J. B 90, 1–5 (2017)CrossRefGoogle Scholar
  12. 12.
    Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)CrossRefGoogle Scholar
  13. 13.
    Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)CrossRefGoogle Scholar
  14. 14.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik-Int. J. Light Electron Opt. 128, 121–132 (2017)CrossRefGoogle Scholar
  15. 15.
    Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 997–1021 (2017). IGI GlobalGoogle Scholar
  16. 16.
    Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)CrossRefGoogle Scholar
  17. 17.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)CrossRefMATHGoogle Scholar
  18. 18.
    Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of bell nonlocality across a quantum spin chain. Int. J. Quantum Inf. 14(07), 1650037 (2016)CrossRefMATHGoogle Scholar
  19. 19.
    Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quantum Inf. Process. 15(8), 3081–3099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quantum Inf. Process. 15(7), 2839–2850 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quantum Inf. Process. 15(4), 1553–1567 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • G. Resconi
    • 1
  • K. Nagata
    • 2
  • O. Tarawneh
    • 3
  • Ahmed Farouk
    • 4
  1. 1.Department of Mathematics and PhysicsCatholic UniversityBresciaItaly
  2. 2.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  3. 3.Information Technology DepartmentAl-Zahra College for WomenMuscatOman
  4. 4.Computer Sciences Department, Faculty of Computers and InformationMansoura UniversityMansouraEgypt

Personalised recommendations