Skip to main content

Proposal for a Quantum-Based Memory for Storing Classical Information and the Connection Between Molecular Dynamics Simulations and the Landauer’s Principle

  • Chapter
  • First Online:
Book cover Quantum Computing:An Environment for Intelligent Large Scale Real Application

Part of the book series: Studies in Big Data ((SBD,volume 33))

  • 1917 Accesses

Abstract

The development of high-capacity memory devices plays an increasingly important role in modern society. High capacities in information storage constitutes a key resource for dealing with the everyday generation of information, as well as for handling the so called Big Data generated in different scientific and technological scenarios. By combining precision metrology and quantum devices such as quantum dots and quantum wires, we propose a quantum memory whose capacity depends on the particular architecture chosen, namely, linear or planar. We show that the geometric disposition of minimal quantum cells or chips is critical in having similar or dramatically outperformed information capacities as compared to current devices. This information is stored in the form of classical bits, though. Realization of such a quantum memory may solve a two-fold problem at the same time: unprecedented higher information capacity with undefined longevity.

We shall obtain as well, by rigorously applying the definition of the exponentiation of a Hermitian matrix, the set of Hamiltonians whose evolution corresponds to the set of universal gates.

Also, Landauer’s principle is a fundamental link between thermodynamics and information theory, which implies that the erasure of information comes at an energetic price, either in classical or quantum computation. In the present contribution we analyze to what extend the usual molecular dynamics (MD) simulation formalism can handle the Landauer’s bound \(k_BT\ln 2\) in the simplest case of one particle treated classically. The erasure of one bit of information is performed by adiabatically varying the shape of a bistable potential in a full cycle. We will highlight the inadequacy of either the microcanonical or canonical ensemble treatments currently employed in MD simulations and propose potential solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voyager NASA mission web site: http://voyager.jpl.nasa.gov/

  2. Hammerer, K., Sorensen, A.S., Polzik, E.S.: 2010 Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–93 (2010)

    Article  Google Scholar 

  3. Choi, K.S., Deng, H., Laurat, J., Kimble, H.J.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)

    Article  Google Scholar 

  4. Zhao, B., Chen, Y-A, Bao, X-H, Strassel, T., Chuu, C-S, Jin, X-M, Schmiedmayer, J., Yuan, Z-S, Chen, S. & Pan, J.W. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–9 (2008)

    Google Scholar 

  5. Reim, K.F., Nunn, J., Lorenz, V.O., Sussman, B.J., Lee, K.C., Langford, N.K., Jaksch, D., Walmsley, I.A.: Towards high-speed optical quantum memories. Nature Photon. 4, 218–21 (2010)

    Article  Google Scholar 

  6. Schnorrberger, U., Thompson, J.D., Trotzky, S., Pugatch, R., Davidson, N., Kuhr, S., Bloch, I.: Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009)

    Article  Google Scholar 

  7. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–3 (2001)

    Google Scholar 

  8. Julsgaard, B., Sherson, J., Ignacio Cirac, J., Fiurasek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432, 482–6 (2004)

    Article  Google Scholar 

  9. Eisaman, M.D., André, A., Massou, F., Fleischhauer, M., Zibrov, A.S., Lukin, M.D.: Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–41 (2005)

    Article  Google Scholar 

  10. Ran, Y., Xue, L., Hu, S., Su, R.-K.: On the Coulomb-type potential of the one-dimensional Schrödinger equation. J. Phys. A: Math. Gen. 33, 9265–9272 (2000)

    Article  MATH  Google Scholar 

  11. Ginzburg, V.L.: Once again about high-temperature superconductivity. Contemp. Phys. 33, 15 (1992)

    Article  Google Scholar 

  12. Brown, J.W., Spector, H.N.: Exciton binding energy in a quantum-well wire. Phys. Rev. B 35, 3009 (1987)

    Article  Google Scholar 

  13. Reyes, J.A., del Castillo-Mussot, M.: Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires. Phys. Rev. B 57, 1690 (1998)

    Article  Google Scholar 

  14. Heeger, A.J., Kivelson, S., Schrieffer, J.R., Su, W.P.: Solitons in conducting polymers. Rev. Mod. Phys. 60, 731 (1988)

    Article  Google Scholar 

  15. Abe, S., Su, W.P.: Excitons and Charge Transfer States in One-Dimensional Semiconductors. Mol. Cryst. Liq. Cryst. 194, 357–362 (1991)

    Article  Google Scholar 

  16. Wigner, E.P.: Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  17. Carr Jr., W.J.: Energy, specific heat, and magnetic properties of the low-density electron gas. Phys. Rev. 122, 1437 (1961)

    Article  Google Scholar 

  18. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press (1999)

    Google Scholar 

  19. Fowler, R.H., Nordheim, L.W.: Electron emission in intense electric fields. Proc. Roy. Soc. (London) A 119, 173–181 (1928)

    Google Scholar 

  20. Melmed, A.J.: The art of science and other aspects of making sharps tips. J. Vac. Sci. Technol. B 9, 601–608 (1991)

    Article  Google Scholar 

  21. Library of Congress web site: http://www.loc.gov/

  22. Barreiro, A., van der Zant, Herre S.J., Vandersypen, L.M.K.: Quantum Dots at Room Temperature carved out from Few-Layer Graphene. Nano Lett. 12 6096 (2012)

    Google Scholar 

  23. Tsutsui, M., Morikawa, T., Arima, A., Taniguchi, M.: Thermoelectricity in atom-sized junctions at room temperatures. Sci Rep. 3, 3326 (2013)

    Article  Google Scholar 

  24. Deutsch, D.: Proc. Royal Soc. London A 425, 73 (1989)

    Article  Google Scholar 

  25. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Phys. Rev. A 52, 3457 (1995)

    Article  Google Scholar 

  26. Deutsch, D., Barenco, A., Ekert, A.: Proc. Royal Soc. London 449, 669 (1995)

    Article  Google Scholar 

  27. DiVincenzo, D.P.: Phys, Rev. A 51, 1015 (1995)

    Article  Google Scholar 

  28. Lloyd, S.: Phys. Rev. Lett. 75, 346 (1995)

    Article  Google Scholar 

  29. DiVincenzo, D.P.: Fortschr. Phys. 48, 771 (2000)

    Article  Google Scholar 

  30. Barenco, A.: Proc. R. Soc. Lond. A 449, 679 (1995)

    Article  MathSciNet  Google Scholar 

  31. Leff, H.S., Rex, A.F. (eds.): Maxwell’s demon 2: Entropy, Classical and Quantum Information, Computing. Princeton University Press, New Jersey (2003)

    Google Scholar 

  32. Szilard, L.: Z. Phys. 53, 840 (1929)

    Article  Google Scholar 

  33. Brillouin, L.: J. Appl. Phys. 22, 334 (1951)

    Article  Google Scholar 

  34. Landauer, R.: IBM J. Res. Dev. 5(183) (1961); Landauer, R.: Nature 335, 779 (1988); Landauer, R.: Science 272, 1914 (1996)

    Google Scholar 

  35. Bennett, C.H.: Int. J. Theor. Phys. 21, 905 (1982)

    Article  Google Scholar 

  36. Piechocinska, B.: Phys. Rev. A 61, 062314 (2000)

    Article  MathSciNet  Google Scholar 

  37. Barkeshli, M.M. (2005). arXiv:cond-mat/0504323

  38. Maroney, O.J.E.: Phys. Rev. E 79, 031105 (2009)

    Article  MathSciNet  Google Scholar 

  39. Metawa, N., Elhoseny, M., Kabir Hassan, M., Hassanien, A.: Loan portfolio optimization using genetic algorithm: a case of credit constraints. In: 12th International Computer Engineering Conference (ICENCO), IEEE, 59–64 (2016). doi:10.1109/ICENCO.2016.7856446

  40. Metawa, N., Hassan, M.K., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions, Expert Systems with Applications, vol. 80, 1 September 2017, pp. 75–82, ISSN 0957-4174. doi:10.1016/j.eswa.2017.03.021

  41. Elhoseny, M., Elminir, H., Riad, A., Yuan, X.: Recent advances of secure clustering protocols in wireless sensor networks. Int. J. Comput. Netw. Commun. Secur. 2(11), 400–413 (2014)

    Google Scholar 

  42. Elhoseny, M., Yuan, X., El-Minir, H.K., Riad, A.M.: Riad, an energy efficient encryption method for secure dynamic WSN. Secur. Commun. Netw. 9, 2024–2031 (2016)

    Google Scholar 

  43. Sagawa, T., Ueda, M.: Phys. Rev. Lett. 100, 80403 (2008)

    Article  Google Scholar 

  44. Bremermann, B.: Int. J. Theor. Phys. 21(203) (1982); Lloyd, S., Zurek, W.H.: J. Stat. Phys. 62(819) (1991); Caves, C.M., Drummond, P.M.: Rev. Mod. Phys. 66(481) (1994); Magnasco, M.O.: Europhys. Lett. 33(583) (1996); Zurek, W.H.: arXiv:quant-ph/0301076 (2003); Scully, M.O. et al. Science 299(862) (2003); Kieu, T.D.: Phys. Rev. Lett. 93, 140–403 (2004); Allahverdyan, A.E., et al.: J. Mod. Optics 51(2703) (2004); Maruyama, K., et al.: J. Phys. A 38(7175) (2005); Quan, H.T. et al.: Phys. Rev. Lett. 97(180402) (2006); Maruyama, K. et al.: Rev. Mod. Phys. 81(1) (2009)

  45. Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H.K., Riad, A.M.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. (99), 1–4 (2014)

    Google Scholar 

  46. Riad, A.M., El-minir, H.K., Elhoseny, M.: Secure routing in wireless sensor network: a state of the art. Int. J. Comput. Appl. 67(7) (2013)

    Google Scholar 

  47. Jarzynski, C.: Phys. Rev. Lett. 78(2690) (1997); Crooks, G.E.: Phys. Rev. E 60(2721) (1999); Mukamel, S.: Phys. Rev. Lett. 90(170604) (2003); Kawai, R.: et al. Phys. Rev. Lett. 98(80602) (2007); J. Liphardt et al. Science 296(1832) (2002); Collin, M. et al.: Nature 437(231) (2005)

    Google Scholar 

  48. Bérut, A., et al.: Nature 483, 187 (2012)

    Article  Google Scholar 

  49. Vedral, V.: Proc. Roy. Soc. Lond. 456, 969 (1996)

    Article  MathSciNet  Google Scholar 

  50. Plenio, M.B.: Phys. Lett. A 263, 281 (1999)

    Article  MathSciNet  Google Scholar 

  51. Holevo, A.S.: Probl. Inf. Transm. 9, 3 (1973)

    Google Scholar 

  52. Pati, A.K., Braunstein, S.L.: Nature 404, 164 (2000)

    Google Scholar 

  53. Hilt, S., Shabbir, S., Anders, J., Lutz, E.: Phys. Rev. E 83, 030102 (2011)

    Article  Google Scholar 

  54. Alder, B.J., Wainwright, T.E.: J. Chem. Phys. 27(1208) (1957); Alder, B.J., Wainwright, T.E.: J. Chem. Phys. 31(459) (1959)

    Google Scholar 

  55. Rahman, A.: Phys. Rev. 136, 405 (1964)

    Article  Google Scholar 

  56. Elhoseny, M., Farouk, A., Zhou, N., Wang, M.-M., Abdalla, S., Batle, J.: Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wirel. Pers. Commun., 121 (2017)

    Google Scholar 

  57. Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H.K., Riad, A.M.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. (99), 1–4 (2014)

    Google Scholar 

  58. Yuan, X., Elhoseny, M., Minir, H., Riad, A.: A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J. Netw. Syst. Manage., 1–26, Springer US (2016). doi:10.1007/s10922-016-9379-7

  59. Elhoseny, M., Yuan, X., El-Minir, H.K., Riad, A.M.: An energy efficient encryption method for secure dynamic WSN. Secur. Commun. Netw. (9), 2024–2031 (2016)

    Google Scholar 

  60. Verlet, L.: Phys. Rev. 159(98) (1964); Verlet, L.: Phys. Rev. 165(201) (1968)

    Google Scholar 

  61. Frenkel, D., Smit, B.: Understanding Molecular Simulation (Academic Press, San Diego, 1996). Computer Simulation of Liquids (Claredon Press, Oxford, M. P. Allen and D. J. Tildesley (1986)

    Google Scholar 

  62. Zurek, W.H.: Maxwell’s Demon, Szilard’s Engine and Quantum Measurements, Frontiers of Nonequilibrium Statistical Physics 135, 151. Plenum Press, New York (1986)

    Google Scholar 

  63. Nosé, S.: J. Chem. Phys. 81(511) (1984); Hoover, W.G.: Phys. Rev. A 31(1695) (1985)

    Google Scholar 

  64. Kumar Patra, P., Bhattacharya, B.: Phys. Rev. E 90, 43304 (2014)

    Google Scholar 

  65. Tsallis, C.: J. Stat. Phys. 52(479) (1988); Gell-Mann, M.: C. Tsallis (Eds.), Nonextensive Entropy: Interdisciplinary Applications. Oxford University Press, New York (2004); C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, New York (2009)

    Google Scholar 

  66. Pekola, J.P., Suomela, S., Galperin, Y.M.: J. Low Temp. Phys. 184, 1015 (2016)

    Google Scholar 

Download references

Acknowledgements

J. Batle acknowledges fruitful discussions with J. Rosselló, Maria del Mar Batle and Regina Batle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Batle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Batle, J., Elhoseny, M., Farouk, A. (2018). Proposal for a Quantum-Based Memory for Storing Classical Information and the Connection Between Molecular Dynamics Simulations and the Landauer’s Principle. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics