Proposal for a Quantum-Based Memory for Storing Classical Information and the Connection Between Molecular Dynamics Simulations and the Landauer’s Principle

  • Josep Batle
  • Mohamed Elhoseny
  • Ahmed Farouk
Part of the Studies in Big Data book series (SBD, volume 33)


The development of high-capacity memory devices plays an increasingly important role in modern society. High capacities in information storage constitutes a key resource for dealing with the everyday generation of information, as well as for handling the so called Big Data generated in different scientific and technological scenarios. By combining precision metrology and quantum devices such as quantum dots and quantum wires, we propose a quantum memory whose capacity depends on the particular architecture chosen, namely, linear or planar. We show that the geometric disposition of minimal quantum cells or chips is critical in having similar or dramatically outperformed information capacities as compared to current devices. This information is stored in the form of classical bits, though. Realization of such a quantum memory may solve a two-fold problem at the same time: unprecedented higher information capacity with undefined longevity.

We shall obtain as well, by rigorously applying the definition of the exponentiation of a Hermitian matrix, the set of Hamiltonians whose evolution corresponds to the set of universal gates.

Also, Landauer’s principle is a fundamental link between thermodynamics and information theory, which implies that the erasure of information comes at an energetic price, either in classical or quantum computation. In the present contribution we analyze to what extend the usual molecular dynamics (MD) simulation formalism can handle the Landauer’s bound \(k_BT\ln 2\) in the simplest case of one particle treated classically. The erasure of one bit of information is performed by adiabatically varying the shape of a bistable potential in a full cycle. We will highlight the inadequacy of either the microcanonical or canonical ensemble treatments currently employed in MD simulations and propose potential solutions.



J. Batle acknowledges fruitful discussions with J. Rosselló, Maria del Mar Batle and Regina Batle.


  1. 1.
    Voyager NASA mission web site:
  2. 2.
    Hammerer, K., Sorensen, A.S., Polzik, E.S.: 2010 Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–93 (2010)CrossRefGoogle Scholar
  3. 3.
    Choi, K.S., Deng, H., Laurat, J., Kimble, H.J.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhao, B., Chen, Y-A, Bao, X-H, Strassel, T., Chuu, C-S, Jin, X-M, Schmiedmayer, J., Yuan, Z-S, Chen, S. & Pan, J.W. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–9 (2008)Google Scholar
  5. 5.
    Reim, K.F., Nunn, J., Lorenz, V.O., Sussman, B.J., Lee, K.C., Langford, N.K., Jaksch, D., Walmsley, I.A.: Towards high-speed optical quantum memories. Nature Photon. 4, 218–21 (2010)CrossRefGoogle Scholar
  6. 6.
    Schnorrberger, U., Thompson, J.D., Trotzky, S., Pugatch, R., Davidson, N., Kuhr, S., Bloch, I.: Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003 (2009)CrossRefGoogle Scholar
  7. 7.
    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–3 (2001)Google Scholar
  8. 8.
    Julsgaard, B., Sherson, J., Ignacio Cirac, J., Fiurasek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432, 482–6 (2004)CrossRefGoogle Scholar
  9. 9.
    Eisaman, M.D., André, A., Massou, F., Fleischhauer, M., Zibrov, A.S., Lukin, M.D.: Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–41 (2005)CrossRefGoogle Scholar
  10. 10.
    Ran, Y., Xue, L., Hu, S., Su, R.-K.: On the Coulomb-type potential of the one-dimensional Schrödinger equation. J. Phys. A: Math. Gen. 33, 9265–9272 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Ginzburg, V.L.: Once again about high-temperature superconductivity. Contemp. Phys. 33, 15 (1992)CrossRefGoogle Scholar
  12. 12.
    Brown, J.W., Spector, H.N.: Exciton binding energy in a quantum-well wire. Phys. Rev. B 35, 3009 (1987)CrossRefGoogle Scholar
  13. 13.
    Reyes, J.A., del Castillo-Mussot, M.: Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires. Phys. Rev. B 57, 1690 (1998)CrossRefGoogle Scholar
  14. 14.
    Heeger, A.J., Kivelson, S., Schrieffer, J.R., Su, W.P.: Solitons in conducting polymers. Rev. Mod. Phys. 60, 731 (1988)CrossRefGoogle Scholar
  15. 15.
    Abe, S., Su, W.P.: Excitons and Charge Transfer States in One-Dimensional Semiconductors. Mol. Cryst. Liq. Cryst. 194, 357–362 (1991)CrossRefGoogle Scholar
  16. 16.
    Wigner, E.P.: Effects of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc. 34, 678 (1938)CrossRefGoogle Scholar
  17. 17.
    Carr Jr., W.J.: Energy, specific heat, and magnetic properties of the low-density electron gas. Phys. Rev. 122, 1437 (1961)CrossRefGoogle Scholar
  18. 18.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press (1999)Google Scholar
  19. 19.
    Fowler, R.H., Nordheim, L.W.: Electron emission in intense electric fields. Proc. Roy. Soc. (London) A 119, 173–181 (1928)Google Scholar
  20. 20.
    Melmed, A.J.: The art of science and other aspects of making sharps tips. J. Vac. Sci. Technol. B 9, 601–608 (1991)CrossRefGoogle Scholar
  21. 21.
    Library of Congress web site:
  22. 22.
    Barreiro, A., van der Zant, Herre S.J., Vandersypen, L.M.K.: Quantum Dots at Room Temperature carved out from Few-Layer Graphene. Nano Lett. 12 6096 (2012)Google Scholar
  23. 23.
    Tsutsui, M., Morikawa, T., Arima, A., Taniguchi, M.: Thermoelectricity in atom-sized junctions at room temperatures. Sci Rep. 3, 3326 (2013)CrossRefGoogle Scholar
  24. 24.
    Deutsch, D.: Proc. Royal Soc. London A 425, 73 (1989)CrossRefGoogle Scholar
  25. 25.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Phys. Rev. A 52, 3457 (1995)CrossRefGoogle Scholar
  26. 26.
    Deutsch, D., Barenco, A., Ekert, A.: Proc. Royal Soc. London 449, 669 (1995)CrossRefGoogle Scholar
  27. 27.
    DiVincenzo, D.P.: Phys, Rev. A 51, 1015 (1995)CrossRefGoogle Scholar
  28. 28.
    Lloyd, S.: Phys. Rev. Lett. 75, 346 (1995)CrossRefGoogle Scholar
  29. 29.
    DiVincenzo, D.P.: Fortschr. Phys. 48, 771 (2000)CrossRefGoogle Scholar
  30. 30.
    Barenco, A.: Proc. R. Soc. Lond. A 449, 679 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s demon 2: Entropy, Classical and Quantum Information, Computing. Princeton University Press, New Jersey (2003)Google Scholar
  32. 32.
    Szilard, L.: Z. Phys. 53, 840 (1929)CrossRefGoogle Scholar
  33. 33.
    Brillouin, L.: J. Appl. Phys. 22, 334 (1951)CrossRefGoogle Scholar
  34. 34.
    Landauer, R.: IBM J. Res. Dev. 5(183) (1961); Landauer, R.: Nature 335, 779 (1988); Landauer, R.: Science 272, 1914 (1996)Google Scholar
  35. 35.
    Bennett, C.H.: Int. J. Theor. Phys. 21, 905 (1982)CrossRefGoogle Scholar
  36. 36.
    Piechocinska, B.: Phys. Rev. A 61, 062314 (2000)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Barkeshli, M.M. (2005). arXiv:cond-mat/0504323
  38. 38.
    Maroney, O.J.E.: Phys. Rev. E 79, 031105 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Metawa, N., Elhoseny, M., Kabir Hassan, M., Hassanien, A.: Loan portfolio optimization using genetic algorithm: a case of credit constraints. In: 12th International Computer Engineering Conference (ICENCO), IEEE, 59–64 (2016). doi: 10.1109/ICENCO.2016.7856446
  40. 40.
    Metawa, N., Hassan, M.K., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions, Expert Systems with Applications, vol. 80, 1 September 2017, pp. 75–82, ISSN 0957-4174. doi: 10.1016/j.eswa.2017.03.021
  41. 41.
    Elhoseny, M., Elminir, H., Riad, A., Yuan, X.: Recent advances of secure clustering protocols in wireless sensor networks. Int. J. Comput. Netw. Commun. Secur. 2(11), 400–413 (2014)Google Scholar
  42. 42.
    Elhoseny, M., Yuan, X., El-Minir, H.K., Riad, A.M.: Riad, an energy efficient encryption method for secure dynamic WSN. Secur. Commun. Netw. 9, 2024–2031 (2016)Google Scholar
  43. 43.
    Sagawa, T., Ueda, M.: Phys. Rev. Lett. 100, 80403 (2008)CrossRefGoogle Scholar
  44. 44.
    Bremermann, B.: Int. J. Theor. Phys. 21(203) (1982); Lloyd, S., Zurek, W.H.: J. Stat. Phys. 62(819) (1991); Caves, C.M., Drummond, P.M.: Rev. Mod. Phys. 66(481) (1994); Magnasco, M.O.: Europhys. Lett. 33(583) (1996); Zurek, W.H.: arXiv:quant-ph/0301076 (2003); Scully, M.O. et al. Science 299(862) (2003); Kieu, T.D.: Phys. Rev. Lett. 93, 140–403 (2004); Allahverdyan, A.E., et al.: J. Mod. Optics 51(2703) (2004); Maruyama, K., et al.: J. Phys. A 38(7175) (2005); Quan, H.T. et al.: Phys. Rev. Lett. 97(180402) (2006); Maruyama, K. et al.: Rev. Mod. Phys. 81(1) (2009)
  45. 45.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H.K., Riad, A.M.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. (99), 1–4 (2014)Google Scholar
  46. 46.
    Riad, A.M., El-minir, H.K., Elhoseny, M.: Secure routing in wireless sensor network: a state of the art. Int. J. Comput. Appl. 67(7) (2013)Google Scholar
  47. 47.
    Jarzynski, C.: Phys. Rev. Lett. 78(2690) (1997); Crooks, G.E.: Phys. Rev. E 60(2721) (1999); Mukamel, S.: Phys. Rev. Lett. 90(170604) (2003); Kawai, R.: et al. Phys. Rev. Lett. 98(80602) (2007); J. Liphardt et al. Science 296(1832) (2002); Collin, M. et al.: Nature 437(231) (2005)Google Scholar
  48. 48.
    Bérut, A., et al.: Nature 483, 187 (2012)CrossRefGoogle Scholar
  49. 49.
    Vedral, V.: Proc. Roy. Soc. Lond. 456, 969 (1996)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Plenio, M.B.: Phys. Lett. A 263, 281 (1999)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Holevo, A.S.: Probl. Inf. Transm. 9, 3 (1973)Google Scholar
  52. 52.
    Pati, A.K., Braunstein, S.L.: Nature 404, 164 (2000)Google Scholar
  53. 53.
    Hilt, S., Shabbir, S., Anders, J., Lutz, E.: Phys. Rev. E 83, 030102 (2011)CrossRefGoogle Scholar
  54. 54.
    Alder, B.J., Wainwright, T.E.: J. Chem. Phys. 27(1208) (1957); Alder, B.J., Wainwright, T.E.: J. Chem. Phys. 31(459) (1959)Google Scholar
  55. 55.
    Rahman, A.: Phys. Rev. 136, 405 (1964)CrossRefGoogle Scholar
  56. 56.
    Elhoseny, M., Farouk, A., Zhou, N., Wang, M.-M., Abdalla, S., Batle, J.: Dynamic multi-hop clustering in a wireless sensor network: Performance improvement. Wirel. Pers. Commun., 121 (2017)Google Scholar
  57. 57.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H.K., Riad, A.M.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. (99), 1–4 (2014)Google Scholar
  58. 58.
    Yuan, X., Elhoseny, M., Minir, H., Riad, A.: A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J. Netw. Syst. Manage., 1–26, Springer US (2016). doi: 10.1007/s10922-016-9379-7
  59. 59.
    Elhoseny, M., Yuan, X., El-Minir, H.K., Riad, A.M.: An energy efficient encryption method for secure dynamic WSN. Secur. Commun. Netw. (9), 2024–2031 (2016)Google Scholar
  60. 60.
    Verlet, L.: Phys. Rev. 159(98) (1964); Verlet, L.: Phys. Rev. 165(201) (1968)Google Scholar
  61. 61.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation (Academic Press, San Diego, 1996). Computer Simulation of Liquids (Claredon Press, Oxford, M. P. Allen and D. J. Tildesley (1986)Google Scholar
  62. 62.
    Zurek, W.H.: Maxwell’s Demon, Szilard’s Engine and Quantum Measurements, Frontiers of Nonequilibrium Statistical Physics 135, 151. Plenum Press, New York (1986)Google Scholar
  63. 63.
    Nosé, S.: J. Chem. Phys. 81(511) (1984); Hoover, W.G.: Phys. Rev. A 31(1695) (1985)Google Scholar
  64. 64.
    Kumar Patra, P., Bhattacharya, B.: Phys. Rev. E 90, 43304 (2014)Google Scholar
  65. 65.
    Tsallis, C.: J. Stat. Phys. 52(479) (1988); Gell-Mann, M.: C. Tsallis (Eds.), Nonextensive Entropy: Interdisciplinary Applications. Oxford University Press, New York (2004); C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, New York (2009)Google Scholar
  66. 66.
    Pekola, J.P., Suomela, S., Galperin, Y.M.: J. Low Temp. Phys. 184, 1015 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat de Les Illes BalearsPalma de MallorcaSpain
  2. 2.Faculty of Computers and InformationMansoura UniversityMansouraEgypt
  3. 3.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations