New Method of Obtaining the Kochen-Specker Theorem

  • Koji Nagata
  • Tadao Nakamura
  • Ahmed Farouk
Part of the Studies in Big Data book series (SBD, volume 33)


We derive a new type of no-hidden-variable theorem based on the assumptions proposed by Kochen and Specker. We consider N spin-1/2 systems. The hidden results of measurement are either \(+1\) or \(-1\) (in \(\hbar /2\) unit). We derive some proposition concerning a quantum expected value under an assumption about the existence of the Bloch sphere in N spin-1/2 systems. However, the hidden variables theory violates the proposition with a magnitude that grows exponentially with the number of particles. Therefore, we have to give up either the existence of the Bloch sphere or the hidden variables theory. Also we discuss a two-dimensional no-hidden-variables theorem of the KS type. Especially, we systematically describe our assertion based on more mathematical analysis using raw data in a thoughtful experiment.


03.65.Ud (Quantum non locality) 03.65.Ta (Quantum measurement 03.65.Ca (Formalism) 



We would like to thank Professor Niizeki and Dr. Ren for valuable comments.


  1. 1.
    Sakurai, J.J.: Modern Quantum Mechanics. Revised ed. Addison-Wesley Publishing Company (1995)Google Scholar
  2. 2.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht, The Netherlands (1993)MATHGoogle Scholar
  3. 3.
    Redhead, M.: Incompleteness, Nonlocality, and Realism. 2nd ed. Clarendon Press, Oxford (1989)Google Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  5. 5.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, New Jersey (1955)MATHGoogle Scholar
  6. 6.
    Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, Volume III, Quantum mechanics. Addison-Wesley Publishing Company (1965)Google Scholar
  7. 7.
    Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)MathSciNetGoogle Scholar
  8. 8.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht, The Netherlands (1989)Google Scholar
  9. 9.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Am. J. Phys. 58, 1131 (1990)CrossRefGoogle Scholar
  10. 10.
    Pagonis, C., Redhead, M.L.G., Clifton, R.K.: Phys. Lett. A 155, 441 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mermin, N.D.: Phys. Today 43(6), 9 (1990)CrossRefGoogle Scholar
  12. 12.
    Mermin, N.D.: Am. J. Phys. 58, 731 (1990)CrossRefGoogle Scholar
  13. 13.
    Peres, A.: Phys. Lett. A 151, 107 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mermin, N.D.: Phys. Rev. Lett. 65, 3373 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Simon, C., Brukner, Č., Zeilinger, A.: Phys. Rev. Lett. 86, 4427 (2001)CrossRefGoogle Scholar
  16. 16.
    Larsson, J.Å.: Europhys. Lett. 58, 799 (2002)CrossRefGoogle Scholar
  17. 17.
    Cabello, A.: Phys. Rev. A 65, 052101 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nagata, K.: J. Math. Phys. 46, 102101 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Huang, Y.-F., Li, C.-F., Zhang, Y.-S., Pan, J.-W., Guo, G.-C.: Phys. Rev. Lett. 90, 250401 (2003)Google Scholar
  20. 20.
    Werner, R.F.: Phys. Rev. A 40, 4277 (1989)CrossRefGoogle Scholar
  21. 21.
    Leggett, A.J.: Found. Phys. 33, 1469 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Nature (London) 446, 871 (2007)CrossRefGoogle Scholar
  23. 23.
    Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Phys. Rev. Lett. 99, 210406 (2007)CrossRefGoogle Scholar
  24. 24.
    Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Phys. Rev. Lett. 99, 210407 (2007)CrossRefGoogle Scholar
  25. 25.
    Suarez, A.: Found. Phys. 38, 583 (2008)CrossRefGoogle Scholar
  26. 26.
    Żukowski, M.: Found. Phys. 38, 1070 (2008)CrossRefGoogle Scholar
  27. 27.
    Suarez, A.: Found. Phys. 39, 156 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Deutsch, D.: Proc. Roy. Soc. London Ser. A 400, 97 (1985)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Deutsch, D., Jozsa, R.: Proc. Roy. Soc. London Ser. A 439, 553 (1992)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Proc. Roy. Soc. London Ser. A 454, 339 (1998)CrossRefGoogle Scholar
  31. 31.
    Jones, J.A., Mosca, M.: J. Chem. Phys. 109, 1648 (1998)CrossRefGoogle Scholar
  32. 32.
    Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Nature (London) 421, 48 (2003)CrossRefGoogle Scholar
  33. 33.
    de Oliveira, A.N., Walborn, S.P., Monken, C.H.: J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)CrossRefGoogle Scholar
  34. 34.
    Kim, Y.-H.: Phys. Rev. A 67, 040301(R) (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: Phys. Rev. Lett. 91, 187903 (2003)CrossRefGoogle Scholar
  36. 36.
    Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 98, 140501 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bernstein, E., Vazirani, U.: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp. 11–20 (1993). doi: 10.1145/167088.167097; SIAM J. Comput. 26–5, pp. 1411–1473 (1997)
  38. 38.
    Simon, D.R.: Foundations of Computer Science. In: Proceedings of the 35th Annual Symposium on: 116-123, retrieved 2011-06-06 (1994)Google Scholar
  39. 39.
    Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: Phys. Rev. A 64, 042306 (2001)CrossRefGoogle Scholar
  40. 40.
    Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P., Haelterman, M., Massar, S.: Phys. Rev. Lett. 90, 157902 (2003)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li, H., Yang, L.: Quantum Inf. Process. 14, 1787 (2015)MathSciNetCrossRefGoogle Scholar
  42. 42.
    De Broglie-Bohm theory—Wikipedia, the free encyclopediaGoogle Scholar
  43. 43.
    Schon, C., Beige, A.: Phys. Rev. A 64, 023806 (2001)CrossRefGoogle Scholar
  44. 44.
    Nagata, K., Nakamura, T.: Physics Journal 1(3), 183 (2015)Google Scholar
  45. 45.
    In probability theory, the law of large numbers is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed. The strong law of large numbers states that the sample average converges almost surely to the expected valueGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Information and Computer ScienceKeio UniversityKohoku-kuJapan
  3. 3.Computer Sciences Department, Faculty of Computers and InformationMansoura UniversityMansouraEgypt

Personalised recommendations