Skip to main content

QFT + NP = P Quantum Field Theory (QFT): A Possible Way of Solving NP-Complete Problems in Polynomial Time

  • Chapter
  • First Online:
Quantum Computing:An Environment for Intelligent Large Scale Real Application

Part of the book series: Studies in Big Data ((SBD,volume 33))

  • 1928 Accesses

Abstract

It has been recently theoretically shown that the dependency of some (potential observable) quantities in quantum field theory (QFT) on the parameters of this theory is discontinuous. This discovery leads to the theoretical possibility of checking whether the value of a given physical quantity is equal to 0 or different from 0 (here, theoretical means that this checking requires very precise measurements and because of that, this conclusion has not yet been verified by a direct experiment). This result from QFT enables us to do what we previously could not: check whether two computable real numbers are equal or not. In this paper, we show that we can use this ability to solve NP-complete (“computationally intractable”) problems in polynomial (“reasonable”) time. Specifically, we will introduce a new model of computation. This new model is based on solid mainstream physics (namely, on quantum field theory). It is capable of solving NP-complete problems in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberth, O.: Precise Numerical Analysis. Wm. C. Brown Publishers, Dubuque, Iowa (1988)

    MATH  Google Scholar 

  2. Aihara, J., Hosoya, H.: Bull. Chem. Soc. Japan, 61, 2657–ff (1988)

    Google Scholar 

  3. Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics. Pergamon Press, New York (1982)

    Google Scholar 

  4. Beeson, M.J.: Foundations of Constructive Mathematics. Springer-Verlag, New York (1985)

    Book  MATH  Google Scholar 

  5. Beezer, R.A., Farrell, E.J.: The matching polynomial of a regular graph. Discrete Mathe. 137(1), 7–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beezer, R.A., Farrell, E.J., Riegsecker, J., Smith, B.: Graphs with a minimum number of pairs of independent edges I: Matching polynomials. Bulletin of the Institute of Combinatorics and Its Applications, 1996 (to appear)

    Google Scholar 

  7. Beltran, A., Salvador, J.M.: The Ulam index. Abstracts of the Second SC-COSMIC Conference in Computational Sciences, October 25–27, El Paso, TX, Rice University Center for Research on Parallel Computations and University of Texas at El Paso, p. 6 (1996)

    Google Scholar 

  8. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the 25th ACM Symposium on Theory of Computing, pp. 11–20 (1993)

    Google Scholar 

  9. Berthiaume, A., Brassard, G.: The quantum challenge to structural complexity theory. In: Proceedings of the 7th IEEE Conference on Structure in Complexity Theory, pp. 132–137 (1992)

    Google Scholar 

  10. Bishop, E.: Foundations of Constructive Analysis, McGraw-Hill (1967)

    Google Scholar 

  11. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  12. Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)

    MATH  Google Scholar 

  13. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. In: Proceedings of the Royal Society of London, Ser. A, Vol. 400, pp. 96–117 (1985)

    Google Scholar 

  14. Deutsch, D., Jozsa, R.: Rapid solution of problem by quantum computation. In: Proceedings of the Royal Society of London, Ser. A, Vol. 439, pp. 553–558 (1992)

    Google Scholar 

  15. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  16. Finkelstein, D., Gibbs, J.M.: Quantum relativity. Int. J. Theor. Phys. 32, 1801 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Finkelstein, D.: Quantum Relativity. Springer-Verlag, Berlin, Heidelberg (1996)

    Book  MATH  Google Scholar 

  18. Frolov, V.M., Grib, A.A., Mostepanenko, V.M.: Conformal symmetry breaking and quantization in curved space-time. Phys. Lett. A 65, 282–284 (1978)

    Article  MathSciNet  Google Scholar 

  19. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  20. Grib, A.A., Mamayev, S.G., Mostepanenko, V.M.: Vacuum Quantum Effects in Strong Fields. Friedmann Laboratory Publishing, St.Petersburg (1994). (Chapter 11)

    Google Scholar 

  21. Grib, A.A., Mostepanenko, V.M.: Spontaneous breaking of gauge symmetry in a homogeneous isotropic universe if the open type. Sov. Phys.-JETP Lett., 25, 277–279 (1977)

    Google Scholar 

  22. Grib, A.A., Mostepanenko, V.M., Frolov, V.M.: Spontaneous breaking of gauge symmetry in a nonstationary isotropic metric. Theor. Math. Phys. 33, 869–876 (1977)

    Article  Google Scholar 

  23. Grib, A.A., Mostepanenko, V.M., Frolov, V.M.: Spontaneous breaking of CP symmetry in a nonstationary isotropic metric. Theor. Math. Phys. 37(2), 975–983 (1978)

    Article  Google Scholar 

  24. Hosoya, H.: Comp. Math. Appls. 12B, 271–ff (1986)

    Google Scholar 

  25. Hosoya, H., Balasubramanian, K.: Computational algorithms for matching polynomials of graphs from the characteristic polynomials of edge-weighted graphs. J. Comput. Chem. 10(5), 698–710 (1989)

    Article  MathSciNet  Google Scholar 

  26. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  27. Kushner, B.A.: Lectures on Constructive Mathematical Analysis, Translations of Mathematical Monographs, vol. 60. American Mathematical Society, Providence (1984)

    MATH  Google Scholar 

  28. Landau, L.D., Lifschitz, E.M.: Quantum Mechanics: Non-relativistic Theory. Pergamon Press, Oxford (1965)

    Google Scholar 

  29. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, San Diego (1994)

    MATH  Google Scholar 

  30. Randic, M., Hosoya, H., Polansky, O.E.: On the construction of the matching polynomial for unbranched catacondensed benzenoids. J. Comput. Chemi. 10(5), 683–697 (1989)

    Article  Google Scholar 

  31. Rosenfeld, V.R., Gutman, I.: A novel approach to graph polynomials. Match, 24, 191–ff (1989)

    Google Scholar 

  32. Salvador, J.M.: Topological indices and polynomials: the partial derivatives. In: Abstracts of the 5th International Conference on Mathematical and Computational Chemistry, May 17–21, Kansas City, Missouri, p. 154 (1993)

    Google Scholar 

  33. Shor, P.W.: Algorithms for quantum computations: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science (FOCS), pp. 124–134 (1994)

    Google Scholar 

  34. Simon, P.: On the power of quantum computation. In: Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science (FOCS), pp. 116–123 (1994)

    Google Scholar 

  35. Turing, A.M.: On computable numbers, with an application to the em Entscheidungsproblem. In: Proceedings London Mathematical Society, vol. 42, pp. 230–265 (1936); see also Proceedings London Mathematics Society, vol. 43, pp. 544–546 (1937)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part:

\(\bullet \) by the National Science Foundation grants

\(\quad \bullet \) HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and

\(\quad \bullet \) DUE-0926721, and

\(\bullet \) by an award “UTEP and Prudential Actuarial Science Academy and Pipeline Initiative” from

   Prudential Foundation.

We are thankful:

\(\bullet \) to Andrei A. Grib and Vladimir M. Mostepanenko who patiently explained their physical results

   to us,

\(\bullet \) to Michael G. Gelfond and Yuri Gurevich for valuable discussions of constructive real numbers,

   and

\(\bullet \) to James M. Salvador for valuable discussions of the corresponding chemical algorithms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kreinovich, V., Longpré, L., Beltran, A. (2018). QFT + NP = P Quantum Field Theory (QFT): A Possible Way of Solving NP-Complete Problems in Polynomial Time. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics