Quantum Information Protocols for Cryptography

  • Bassem Abd-El-Atty
  • Salvador E. Venegas-Andraca
  • Ahmed A. Abd El-Latif
Chapter
Part of the Studies in Big Data book series (SBD, volume 33)

Abstract

Quantum cryptography is a robust field of quantum computation and quantum information that focuses on protecting data secrecy by using properties of quantum-mechanical systems. Over the last few years, quantum cryptography has evolved into an emergent high-tech market with companies capable of delivering off-the-shelf products. This chapter introduces a succinct overview of some fundamental concepts of quantum computation, quantum information protocols and their use on the development of quantum cryptography protocols. Key concepts include quantum key distribution, quantum secret sharing, quantum secure direct communication, and deterministic secure quantum communication.

References

  1. 1.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)Google Scholar
  2. 2.
    Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)Google Scholar
  3. 3.
    IEEE. Rebooting Computing Initiative. http://rebootingcomputing.ieee.org/
  4. 4.
    von Neumann, J.: Fourth University of Illinois Lecture (Theory of self-reproducing Automata). University of Illinois Press (1966)Google Scholar
  5. 5.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)Google Scholar
  6. 6.
    Landauer, R.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)Google Scholar
  7. 7.
    Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)Google Scholar
  8. 8.
    Mertens, S., Moore, C.: Continuum percolation thresholds in two dimensions. Phys. Rev. E 86, 061109 (2012)Google Scholar
  9. 9.
    Bennett, H.C., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lee, J., Kim, M.S.: Entanglement teleportation via werner states. Phys. Rev. Lett. 84(18), 4236–4239 (2000)Google Scholar
  11. 11.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mermin, N.D.: Deconstructing dense coding. Phys. Rev. A. 66, 032308 (2002)CrossRefGoogle Scholar
  13. 13.
    Abd-El-Atty, B., Abd El-Latif, A.A., Amin, M.: New quantum image steganography scheme with Hadamard transformation. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 342–352, Springer International Publishing (2016)Google Scholar
  14. 14.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2015)Google Scholar
  15. 15.
    Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum images. Measurement 73, 352–359 (2015)Google Scholar
  16. 16.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179, Bangalore, India (1984)Google Scholar
  17. 17.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)Google Scholar
  18. 18.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)Google Scholar
  19. 19.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)Google Scholar
  21. 21.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)CrossRefGoogle Scholar
  22. 22.
    Chen, P., Long, G.L., Deng, F.G.: High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Chin. Phys. B 15, 2228–2235 (2006)Google Scholar
  23. 23.
    Beige, A., Englert, B.G., Urtsiefer, C.K., Weinfurter, H.: Secure communication with a publicly known key. Acta Physica Polonica A 101(3), 357–368 (2002)Google Scholar
  24. 24.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)Google Scholar
  25. 25.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefGoogle Scholar
  26. 26.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)Google Scholar
  27. 27.
    Yin, X., Ma, W., Shen, D., Hao, C.: Efficient three-party quantum secure direct communication with EPR pairs. Quantum Inf. Sci. 3, 1–5 (2013)Google Scholar
  28. 28.
    Zhang, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. Chin. Phys. Mech. Astron. 57(7), 1238 (2014)CrossRefGoogle Scholar
  29. 29.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B 39(18), 3855–3863 (2006)Google Scholar
  30. 30.
    Chang, Y., Zhang, S.B., Yan, L.L.: A bidirectional quantum secure direct communication protocol based on five-particle cluster state. Chin. Phys. Lett. 30, 090301 (2013)CrossRefGoogle Scholar
  31. 31.
    Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)CrossRefGoogle Scholar
  32. 32.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)CrossRefGoogle Scholar
  33. 33.
    Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256–258 (2006)CrossRefMATHGoogle Scholar
  34. 34.
    Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)Google Scholar
  35. 35.
    Quan, D.X., Pei, C.X., Liu, D., Nan, Z.: One-way deterministic secure quantum communication protocol based on single photons. Acta. Phys. Sin. 59, 2493–2497 (2010)Google Scholar
  36. 36.
    Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)Google Scholar
  37. 37.
    Zhao, G.: Quantum secure communication protocol based on single-photon. Int. J. Sec. Appl. 9(3), 267–274 (2015)Google Scholar
  38. 38.
    Xin, X., Hua, X., Song, J., Li, F.: Quantum authentication protocol for classical messages based on bell states and hash function. Int. J. Sec. Appl. 9(7), 285–292 (2015)Google Scholar
  39. 39.
    Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601 (2004)Google Scholar
  40. 40.
    Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A Math. Gen. 38(25), 5761 (2005)Google Scholar
  41. 41.
    Shaari, J.S., Lucamarini, M., Wahiddin, M.R.B.: Deterministic six states protocol for quantum communication. Phys. Lett. A 358(2), 85–90 (2006)Google Scholar
  42. 42.
    Li, X., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Quantum secure direct communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)Google Scholar
  43. 43.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51(9), 2787–2797 (2012)Google Scholar
  44. 44.
    Yan, C., Shi-Bin, Z., Li-Li, Y., Gui-Hua, H.: Controlled deterministic secure quantum communication protocol based on three-particle GHZ states in X-basis. Commun. Theor. Phys. 63(3), 285–290 (2015)Google Scholar
  45. 45.
  46. 46.
    IID Quantique. http://www.nucrypt.net/
  47. 47.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, Cambridge University Press (2000)Google Scholar
  48. 48.
    Venegas-Andraca, S.E.: Quantum walks and quantum image processing. DPhil Thesis, The University of Oxford (2005)Google Scholar
  49. 49.
    Andress, J.: The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd edn. Elsevier (2014)Google Scholar
  50. 50.
    Bouwmeester, D.: The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd edn. Elsevier (2014)Google Scholar
  51. 51.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406Google Scholar
  52. 52.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefGoogle Scholar
  53. 53.
    Loepp, S., Wootters, W., Zurek, W.: Protecting information: from classical error correction to quantum cryptography. Cambridge University Press (2006)Google Scholar
  54. 54.
    Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)Google Scholar
  55. 55.
    Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)Google Scholar
  56. 56.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Bassem Abd-El-Atty
    • 1
  • Salvador E. Venegas-Andraca
    • 2
  • Ahmed A. Abd El-Latif
    • 1
  1. 1.Faculty of Science, Department of MathematicsMenoufia UniversityMenofia GovernorateEgypt
  2. 2.Escuela de Ingenieria y CienciasTecnologico de MonterreyMonterreyMexico

Personalised recommendations