Skip to main content

Targeted Drug Delivery for Personalized Cure

  • Chapter
  • First Online:
Book cover Advances in Personalized Nanotherapeutics

Abstract

Human population bears a similarity to an extent of 99.9%, however mere 0.1% of variability also creates large differences in personal make-up owing to several hereditary and environmental factors. Conventionally, development of healthcare modalities like diagnostics and therapeutics has been by mass production assuming uniformity in characteristics of recipient population. Due to the inherent variability in each individual clinical response to diagnostic and therapeutic products vary greatly ranging from inefficient therapeutic compliance, adverse reactions and hypersensitivity reactions. Personalization of medications is the need of hour to avoid perils of both modalities so that efficient healthcare is provided to human population. Advances in delivery like targeted drug formulations, companion diagnostics and triggered drug formulations provide necessary dimensions to personalized medicines. Formulations with these capabilities can be described as theranostics and have been instrumental in this decade to establish the field of personalized medicine. The current chapter reviews different types, mechanisms of targeted and triggered drug delivery systems that have helped to improve the diagnostic and therapeutic compliance in disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jain KK. Textbook of personalized medicine. 2nd ed. Berlin: Springer; 2015.

    Google Scholar 

  2. Personalized Medicine Coalition. 2015. http://www.personalizedmedicinecoalition.org/News/Press_Releases/More_Than_1_in_4_Novel_New_Drugs_Approved_by_FDA_in_2015_are_Personalized_Medicines. Accessed Sept 2017.

  3. Reiss T. Drug discovery of the future: the implications of the human genome project. Trends Biotechnol. 2001;19(12):496–9. doi:10.1016/S0167-7799(01)01811-X.

    Article  CAS  PubMed  Google Scholar 

  4. Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19(12):491–6. doi:10.1016/S0167-7799(01)01814-5.

    Article  CAS  PubMed  Google Scholar 

  5. Doren M, Samsioe G. Prevention of postmenopausal osteoporosis with oestrogen replacement therapy and associated compounds: update on clinical trials since 1995. Hum Reprod Update. 2000;6(5):419–26.

    Article  CAS  PubMed  Google Scholar 

  6. Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404:1–9. doi:10.1016/j.ijpharm.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  7. Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang H-G. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Therapeutics. 2014;22(3):522–34. doi:10.1038/mt.2013.190.

    CAS  Google Scholar 

  8. Tiwari G, Tiwari R, Wal P, Wal A, Rai AK. Primary and novel approaches for colon targeted drug delivery—a review. Int J Drug Deliv. 2010;2:1–11.

    Article  CAS  Google Scholar 

  9. Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem. 1984;27(3):261–6. doi:10.1021/jm00369a005.

    Article  CAS  PubMed  Google Scholar 

  10. Hata T, Shimazaki Y, Kagayama A, Tamura S, Ueda S. Development of a novel drug delivery system, time-controlled explosion system (TES): V. Animal pharmacodynamic study and human bioavailability study. Int J Pharm. 1994;110(1):1–7. doi:10.1016/0378-5173(94)90369-7.

    Article  CAS  Google Scholar 

  11. Tozaki H, Odoriba T, Okada N, Fujita T, Terabe A, Suzuki T, Okabe S, Muranishi S, Yamamoto A. Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release. 2002;82(1):51–61. doi:10.1016/S0168-3659(02)00084-6.

    Article  CAS  PubMed  Google Scholar 

  12. Lu W, Tan Y-Z, K-L H, Jiang X-G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood–brain barrier. Int J Pharm. 2005;295(1-2):247–60. doi:10.1016/j.ijpharm.2005.01.043.

    Article  CAS  PubMed  Google Scholar 

  13. Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120(2):420–31. doi:10.1002/ijc.22296.

    Article  CAS  PubMed  Google Scholar 

  14. Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R, Tang J, Zhang L, Zhang Z, Zhang Q, Liu J, He Q. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm. 2011;420(2):304–12. doi:10.1016/j.ijpharm.2011.09.008.

    Article  CAS  PubMed  Google Scholar 

  15. Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther. 1999;291(3):1017–22.

    CAS  PubMed  Google Scholar 

  16. Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release. 2012;159(3):429–34. doi:10.1016/j.jconrel.2012.01.031.

    Article  CAS  PubMed  Google Scholar 

  17. Huwyler JWD, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci. 1996;93:14164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324:1064–72.

    Article  CAS  PubMed  Google Scholar 

  19. Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J, Jiang X. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33(3):916–24. doi:10.1016/j.biomaterials.2011.10.035.

    CAS  PubMed  Google Scholar 

  20. Tamaru M, Akita H, Fujiwara T, Kajimoto K, Harashima H. Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem Biophys Res Commun. 2010;394(3):587–92. doi:10.1016/j.bbrc.2010.03.024.

    Article  CAS  PubMed  Google Scholar 

  21. Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release. 2003;93(3):271–82. doi:10.1016/j.jconrel.2003.08.006.

    Article  CAS  PubMed  Google Scholar 

  22. Gaillard PJ, de Boer AG. 2B-trans™ technology: targeted drug delivery across the blood-brain barrier. In: Jain KK, editor. Drug delivery systems. Totowa, NJ: Humana Press; 2008. p. 161–75. doi:10.1007/978-1-59745-210-6_8.

    Chapter  Google Scholar 

  23. Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon IC, Kim I-S, Park JY, Seo SB, Park CR, Jeong SY. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91(1-2):135–45. doi:10.1016/S0168-3659(03)00231-1.

    Article  CAS  PubMed  Google Scholar 

  24. Lee E, Lee J, Lee I-H, Yu M, Kim H, Chae SY, Jon S. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51(20):6442–9. doi:10.1021/jm800767c.

    Article  CAS  PubMed  Google Scholar 

  25. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2013;4(4):385–92. doi:10.1007/s13204-013-0216-y.

    Article  Google Scholar 

  26. Chen F-H, Zhang L-M, Chen Q-T, Zhang Y, Zhang Z-J. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun. 2010;46(45):8633–5. doi:10.1039/C0CC02577A.

    Article  CAS  Google Scholar 

  27. Arias JL, Gallardo V, Ruiz MA, Delgado ÁV. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm. 2008;69(1):54–63. doi:10.1016/j.ejpb.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  28. Ogawara K-i, Yoshida M, Higaki K, Toshikiro K, Shiraishi K, Nishikawa M, Takakura Y, Hashida M. Hepatic uptake of polystyrene microspheres in rats: effect of particle size on intrahepatic distribution. J Control Release. 1999;59(1):15–22. doi:10.1016/S0168-3659(99)00015-2.

    Article  CAS  PubMed  Google Scholar 

  29. Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice. J Control Release. 2001;70(3):295–307. doi:10.1016/S0168-3659(00)00356-4.

    Article  CAS  PubMed  Google Scholar 

  30. Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: in vitro and in vivo characterization. J Biomed Mater Res A. 2009;88A(1):140–8. doi:10.1002/jbm.a.31866.

    Article  CAS  Google Scholar 

  31. Yuan Z-X, Sun X, Gong T, Ding H, Fu Y, Zhang Z-R. Randomly 50% N-acetylated low molecular weight chitosan as a novel renal targeting carrier. J Drug Target. 2007;15(4):269–78. doi:10.1080/10611860701289875.

    Article  CAS  PubMed  Google Scholar 

  32. Yang R, Yang S-G, Shim W-S, Cui F, Cheng G, Kim I-W, Kim D-D, Chung S-J, Shim C-K. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci. 2009;98(3):970–84. doi:10.1002/jps.21487.

    Article  CAS  PubMed  Google Scholar 

  33. Joshi N, Shirsath N, Singh A, Joshi KS, Banerjee R. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep. 2014;4:7085. doi:10.1038/srep07085.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48(3):171–6.

    PubMed  Google Scholar 

Download references

Acknowledgement

Abhijeet Joshi acknowledges the INSPIRE Faculty award and fellowship provided by Department of Science and Technology, Government of India. Authors would also like acknowledge financial support from DBT and SERB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhari, R., Joshi, A. (2017). Targeted Drug Delivery for Personalized Cure. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_7

Download citation

Publish with us

Policies and ethics