Skip to main content

Nanotechnology for Therapeutics

Abstract

Tremendous growth in the field of pharmacology and therapeutics has been observed due to revolutionised development of novel drug delivery systems predominantly based on “Nanotechnology”. Treatment of wide varieties of diseases is made possible by miniaturisation of drug delivery systems. Nanotechnology delivers a unique approach, which promises higher drug efficacy, targeted drug delivery, on demand delivery, biocompatibility, etc. The importance of nanotechnology can be visualised by its ability of addressing several problems in central areas of biomedical, chemical, mechanical and electronics. Here, we discuss how nano-therapeutics can be fruitful for the treatment of brain diseases such as human immunodeficiency virus (HIV), Parkinson’s, cancer, Alzheimer and their drug delivery mechanism. In this regard, the challenges involved and required future developments in drug delivery systems becomes few important topics to be worked on for expanding the utilization of nano-therapeutics.

Graphical Abstract

The transition of conventional theruputics to highly effective nanotherapeutics

Graphical Abstract

Keywords

  • Nanotechnology
  • Nano neurotherapeutics
  • Nanodevices
  • Nanobots
  • Drug deliveery systems

This is a preview of subscription content, access via your institution.

Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  1. Kabu S, Gao Y, Kwon BK, Labhasetwar V. J Control Release. 2015;219:141–54.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kamaly N, Yameen B, Wu J, Farokhzad OC. Chem Rev. 2016;116:2602–63.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. Neuro-Oncol. 2016;18:27–36.

    CrossRef  PubMed  Google Scholar 

  4. Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta Y, Nair M. Biomater Sci. 2016;4:1535.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nair M, Jayant RD, Kaushik A, Sagar V. Adv Drug Deliv Rev. 2016;103:202.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rao V. Transl Biomed. 2016;7:2.

    Google Scholar 

  7. Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J. Chem Soc Rev. 2016;45:1225–41.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Srikanth M, Kessler JA. Nat Rev Neurol. 2012;8:307–18.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jung YC, Bhushan B. Nanotechnology. 2006;17:4970.

    CrossRef  CAS  Google Scholar 

  10. Sharmin E, Akram D, Vashist A, Wani M, Ahmad A, Zafar F, Ahmad S. Chemistry of phytopotentials: Health, energy and environmental perspectives. Berlin: Springer; 2012. p. 223–7.

    CrossRef  Google Scholar 

  11. Park K. J Control Release. 2007;120:1.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seeman NC. Chem Biol. 2003;10:1151–9.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Shi J, Votruba AR, Farokhzad OC, Langer R. Nano Lett. 2010;10:3223–30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koo OM, Rubinstein I, Onyuksel H. Nanomedicine. 2005;1:193–212.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Alderton GK. Nat Rev Cancer. 2016;16:5–5.

    Google Scholar 

  16. DeVience SJ, Pham LM, Lovchinsky I, Sushkov AO, Bar-Gill N, Belthangady C, Casola F, Corbett M, Zhang H, Lukin M. Nat Nanotechnol. 2015;10:129–34.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Vashist A, Shahabuddin S, Gupta YK, Ahmad S. J Mater Chem B. 2013;1:168–78.

    CrossRef  CAS  Google Scholar 

  18. Delalat B, Sheppard VC, Ghaemi SR, Rao S, Prestidge CA, McPhee G, Rogers M-L, Donoghue JF, Pillay V, Johns TG. Nat Commun. 2015;6:8791.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Fonseca-Santos B, Gremião MPD, Chorilli M. Int J Nanomedicine. 2015;10:4981.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez A-I. Biomaterials. 2016;103:229–55.

    CrossRef  CAS  PubMed  Google Scholar 

  21. Sharma R, Agrawal U, Mody N, Vyas SP. Biotechnol Adv. 2015;33:64–79.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. ACS Nano. 2015;9:4686–97.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH. Mar Drugs. 2015;13:6792–817.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosal A, Shah J, Kotnala RK, Ahmad S. J Mater Chem A. 2013;1:12868–78.

    CrossRef  CAS  Google Scholar 

  25. Khan R, Kaushik A. Nanobiotechnology for sensing applications: from lab to field. Oakville, ON: Apple Academic; 2016. p. 265–86.

    CrossRef  Google Scholar 

  26. Vasudev A, Kaushik A, Tomizawa Y, Norena N, Bhansali S. Sensors Actuators B Chem. 2013;182:139–46.

    CrossRef  CAS  Google Scholar 

  27. Leondes CT. Mems/Nems: (1) Handbook techniques and applications design methods, (2) Fabrication techniques, (3) manufacturing methods, (4) Sensors and actuators, (5) Medical applications and MOEMS. New York: Springer Science & Business Media; 2007.

    Google Scholar 

  28. Manickam P, Kaushik A, Karunakaran C, Bhansali S. Biosens Bioelectron. 2017;87:654–68.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Vashist A, Ahmad S. Curr Pharm Biotechnol. 2015;16:606–20.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Vashist A, Vashist A, Gupta Y, Ahmad S. J Mater Chem B. 2014;2:147–66.

    CrossRef  CAS  Google Scholar 

  31. Korotcenkov G, Cho B. Porous silicon: from formation to application: biomedical and sensor applications. Biomed Sens Appl. 2016;2, 299

    Google Scholar 

  32. Vashist A, Ghosal A, Gupta YK, Ahmad S, Nair M. Nanocomposite hydrogels for neuro drug delivery. J Neuroimmune Pharmacol. 2016;11:s48–s49. New York: Springer.

    Google Scholar 

  33. Rawat NK, Ghosal A, Ahmad S. RSC Adv. 2014;4:50594–605.

    CrossRef  CAS  Google Scholar 

  34. Ghosal A, Rahman OU, Ahmad S. High-performance soya polyurethane networked silica hybrid nanocomposite coatings. Ind Eng Chem Research. 2015;54:12770–87.

    Google Scholar 

  35. Sharmin E, Akram D, Ghosal A, ur Rahman O, Zafar F, Ahmad S. Prog Org Coat. 2011;72:469–72.

    CrossRef  CAS  Google Scholar 

  36. Muthukumaran G, Ramachandraiah U, Samuel D. In Advanced Materials Research, 2015;1086:61–7.

    Google Scholar 

  37. Vashist A, Ahmad S. Orient J Chem. 2013;29:861–70.

    CrossRef  Google Scholar 

  38. Masoomi MY, Morsali A. Coord Chem Rev. 2012;256:2921–43.

    CrossRef  CAS  Google Scholar 

  39. Ariga K, Ito H, Hill JP, Tsukube H. Chem Soc Rev. 2012;41:5800–35.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Delgado JL, Herranz MÁ, Martin N. J Mater Chem. 2008;18:1417–26.

    CrossRef  CAS  Google Scholar 

  41. Hwang SR, Kim K. Arch Pharm Res. 2014;37:24–30.

    CrossRef  CAS  PubMed  Google Scholar 

  42. Abdelmohsen LK, Peng F, Tu Y, Wilson DA. J Mater Chem B. 2014;2:2395–408.

    CrossRef  CAS  Google Scholar 

  43. Brzeziński M, Biela T. Polym Int. 2015;64:1667–75.

    CrossRef  Google Scholar 

  44. Hartley JM, Kopeček J, Nam J, Jung S, Hwang S, Song J, Kim S, Sultana S, Sultana S, Islan GA. Smart pharmaceutical nanocarriers. Singapore: World Scientific; 2016. p. 373–413.

    CrossRef  Google Scholar 

  45. Phillips AJ. Developing a predictable regulatory path for nanomedicines by accurate and objective particle measurement. In: Braddock M, editor. Nanomedicines. Cambridge: Royal Society of Chemistry. 2016;253–80.

    Google Scholar 

  46. Jayant RD, Sosa D, Kaushik A, Atluri V, Vashist A, Tomitaka A, Nair M. Expert Opin Drug Deliv. 2016;13:1433.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaushik A, Jayant RD, Nair M. Int J Nanomedicine. 2016;11:4317.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bawa R, Audette GF, Rubinstein I. Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. Boca Raton: CRC; 2016.

    Google Scholar 

  49. Dixit CK, Kaushik A. Nanobiotechnology for sensing applications: from lab to field. Oakville, ON: Apple Academic; 2016. p. 351–4.

    CrossRef  Google Scholar 

  50. Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater. 2016;10:015003.

    Google Scholar 

  51. Zhou R. Nanomedicine. 2016;12:468.

    CrossRef  Google Scholar 

  52. Zheng W, Wei M, Li S, Le W. Nanomedicine. 2016;11:1417–30.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Chen Z, Ma L, Liu Y, Chen C. Theranostics. 2012;2:238–50.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gutiérrez L, Costo R, Grüttner C, Westphal F, Gehrke N, Heinke D, Fornara A, Pankhurst Q, Johansson C, Veintemillas-Verdaguer S. Dalton Trans. 2015;44:2943–52.

    CrossRef  PubMed  Google Scholar 

  55. Soenen SJ, Parak WJ, Rejman J, Manshian B. Chem Rev. 2015;115:2109–35.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Kaushik A, Vabbina PK, Atluri V, Shah P, Vashist A, Jayant RD, Yandart A, Nair M. Biosens Bioelectron. 2016;86:426–31.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  57. Such GK, Yan Y, Johnston AP, Gunawan ST, Caruso F. Adv Mater. 2015;27:2278–97.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Trends Biotechnol. 2017, 35:308–17.

    Google Scholar 

  59. Singh R, Norret M, House MJ, Galabura Y, Bradshaw M, Ho D, Woodward RC, Pierre TGS, Luzinov I, Smith NM. Small. 2016;12:351–9.

    CrossRef  CAS  PubMed  Google Scholar 

  60. Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B. Eur J Pharm Biopharm. 2015;89:248–58.

    CrossRef  CAS  PubMed  Google Scholar 

  61. Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Colloids Surf B Biointerfaces. 2016;145:8–13.

    CrossRef  CAS  PubMed  Google Scholar 

  62. Mary TA, Shanthi K, Vimala K, Soundarapandian K. RSC Adv. 2016;6:22936–49.

    CrossRef  CAS  Google Scholar 

  63. Desai D, Prabhakar N, Mamaeva V, Karaman DŞ, Lähdeniemi IA, Sahlgren C, Rosenholm JM, Toivola DM. Int J Nanomedicine. 2016;11:299.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. Boca Raton, FL: CRC; 2016.

    Google Scholar 

  65. Vij N, Min T, Bodas M, Gorde A, Roy I. Nanomedicine. 2016;12:2415–27.

    CrossRef  CAS  PubMed  Google Scholar 

  66. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON. Biosens Bioelectron. 2010;25:1254–63.

    CrossRef  CAS  PubMed  Google Scholar 

  67. Zamani M, Prabhakaran MP, Ramakrishna S. Int J Nanomedicine. 2013;8:2997–3017.

    PubMed  PubMed Central  Google Scholar 

  68. Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Adv Drug Deliv Rev. 2015;91:125–40.

    CrossRef  CAS  PubMed  Google Scholar 

  69. Xing J-F, Zheng M-L, Duan X-M. Chem Soc Rev. 2015;44:5031–9.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Woitalla D, Müller T, Benz S, Horowski R, Przuntek H. Focus on extrapyramidal dysfunction. Wien: Springer; 2004. p. 89–95.

    CrossRef  Google Scholar 

  71. Deshmukh AM, Dixit A, Kumar P, Bindra V. U.S. Patent 14/893,020. 2014 May 19. 2016.

    Google Scholar 

  72. Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. J Drug Target. 2015;23:775–88.

    CrossRef  CAS  PubMed  Google Scholar 

  73. Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Curr Pharm Des. 2010;16:1644–53.

    CrossRef  CAS  PubMed  Google Scholar 

  74. Helie S, Chakravarthy S, Moustafa AA. Front Comput Neurosci. 2015;7:174.

    Google Scholar 

  75. Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Biosens Bioelectron. 2016;80:273–87.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee JJ, Oh JS, Ham JH, Lee DH, Lee I, Sohn YH, Kim JS, Lee PH. Neurobiol Aging. 2016;38:197–204.

    CrossRef  CAS  PubMed  Google Scholar 

  77. Kaushik A, Tiwari S, Jayant RD, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron. 2016;75:254–72.

    Google Scholar 

  78. Giuffrida A, Martinez A. Levodopa-induced dyskinesia in Parkinson’s disease. London: Springer; 2014. p. 245–64.

    Google Scholar 

  79. Müller T. J Parkinsonism Restless Legs Synd. 2015;5:11–7.

    CrossRef  Google Scholar 

  80. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO; 2013.

    Google Scholar 

  81. Chiappetta DA, Hocht C, Taira C, Sosnik A. Nanomedicine. 2010;5:11–23.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Dixit C, Kaushik AK. Microfluidics for biologists: fundamentals and applications. Switzerland: Springer; 2016.

    CrossRef  Google Scholar 

  83. Yadavalli T, Shukla D. Nanomedicine. 2016;13:219. doi:10.1016/j.nano.2016.08.016.

    CrossRef  PubMed  Google Scholar 

  84. Chris GW, Duu-Jong L. Nanotechnology. 2016;27:365101.

    CrossRef  Google Scholar 

  85. Whiteley CG, Shing CY, Kuo CC, Lee D-J. J Taiwan Inst Chem Eng. 2016;60:83–91.

    CrossRef  CAS  Google Scholar 

  86. Wong PT, Choi SK. Chem Rev. 2015;115:3388–432.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support received from the Council of Scientific and Industrial research (CSIR), New Delhi, India for this work. I am also thankful for the financial support given by Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Gautam Buddh Nagar, Uttar Pradesh, India. Dr. Anujit Ghosal also expresses his sincere gratitude to the Government of India, Science and Engineering Research Board (SERB) (NPDF/2016/003866).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anujit Ghosal or Sharif Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ghosal, A., Vashist, A., Tiwari, S., Sharmin, E., Ahmad, S., Bhattacharya, J. (2017). Nanotechnology for Therapeutics. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_3

Download citation