Skip to main content

Carbohydrates

  • Chapter
  • First Online:
Principles of Food Chemistry

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Carbohydrates or saccharides (from the Greek word sakkharon meaning sugar) occur in plant and animal tissues as well as in microorganisms; as macronutrients they are the human body’s preferred energy source, providing fuel for the central nervous system and energy for working muscles. Carbohydrates also serve as (1) a short-term energy source for all organisms, (2) structural molecules in plants, and (3) storage forms of foods in plants and animals. Carbohydrates are technically hydrates of carbon with the empirical formula Cm(H2O)n (where m could be different from n), but structurally they are more accurately viewed as polyhydroxy aldehydes and ketones. Carbohydrates can be divided into three chemical groups: monosaccharides, oligosaccharides, and polysaccharides, with the first being small (lower molecular weight) and commonly referred to as simple sugars. Carbohydrates in food can also be classified as simple or complex, with the difference between the two forms being the chemical structure and how quickly they are absorbed and digested. In animal organisms, the main sugar is glucose and the storage carbohydrate is glycogen; in milk, the main sugar is almost exclusively the disaccharide lactose. In plant organisms, a wide variety of monosaccharides and oligosaccharides occur, as well as storage polysaccharides such as starch, and structural polysaccharides such as cellulose and hemicellulose. Gums are a varied group of polysaccharides obtained from plants, seaweeds, and microorganisms. Because of their useful physical properties, the gums have found widespread application in food processing. The main carbohydrates that occur in a number of example food products are listed in Table 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anon. (2017). Glycemic index. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Glycemic_index.

  • Angyal, S. J. (1976). Conformational analysis in carbohydrate chemistry III. The 13C NMR spectra of hexuloses. Australian Journal of Chemistry, 29, 1249–1265.

    Article  CAS  Google Scholar 

  • Angyal, S. J. (1984). The composition of reducing sugars in solution. Advances in Carbohydrate Chemistry and Biochemistry, 42, 15–68.

    Article  CAS  Google Scholar 

  • Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemists Collaborative Study. (1984). Total dietary fiber method. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Astray, G., Gonzalez-Barreiro, C., Mejuto, J. C., & Rial-Otero, R. (2009). A review on the use of cyclodextrins in foods. Food Hydrocolloids, 23, 1631–1640.

    Article  CAS  Google Scholar 

  • Barcza, A., Rohonczy, J., Rozlosnik, N., Lovas, G., Braun, T., Samu, J., & Barcza, L. (2001). Aqueous solubilization of [60] fullerene via inclusion complex formation and the hydration of C60. Journal of the Chemical Society, Perkin Transactions, 2, 191–196.

    Article  Google Scholar 

  • BeMiller, J. N., Huber, K. C., Damodaran, K. L., Parkin, O. R., Food, S., & Fourth, C. (2008). Fennema’s food chemistry. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), (4th ed., pp. 84–151). Boca Raton, FL: CRC/Taylor and Francis.

    Google Scholar 

  • Bertoft, E. (2004). On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydrate Polymers, 57, 211–224.

    Article  CAS  Google Scholar 

  • Bertoft, E., Piyachomkwan, K., Chatakanonda, P., & Sriroth, K. (2008). Internal unit chain composition in amylopectins. Carbohydrate Polymers, 74, 527–543.

    Article  CAS  Google Scholar 

  • Blankers, I. (1995). Properties and applications of lactitol. Food Technology, 49, 66–68.

    CAS  Google Scholar 

  • Blazek, J. D., Gaddy, A., Meyer, R., Roper, R. J., & Li, J. (2011). Disruption of bone development and homeostasis by trisomy in Ts65Dn Down syndrome mice. Bone, 48(2), 275–280.

    Article  CAS  Google Scholar 

  • Boyd, W. (2016). Color it natural. Prepared Foods, June edition, 90–102.

    Google Scholar 

  • Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998). Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85–112.

    Article  Google Scholar 

  • Campbell, L. A., & Palmer, G. H. (1978). Pectin. In G. A. Spiller & R. J. Amen (Eds.), Topics in dietary fiber research. New York: Plenum Press.

    Google Scholar 

  • Chung, H., & Liu, Q. (2009). Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling. Carbohydrate Polymers, 770, 807–815.

    Article  CAS  Google Scholar 

  • Clarke, M., Edye, L., & Eggleston, G. (1997). Sucrose decomposition in aqueous solution and product loss in sugar manufacture and refining. Advances in Carbohydrate Chemistry and Biochemistry, 52, 441–470.

    Article  CAS  Google Scholar 

  • Cole, M., Eggleston, G., Gilbert, A., & Chung, Y. (2016). Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products. Food Chemistry, 190, 50–59.

    Article  CAS  Google Scholar 

  • Commerford, J. D. (1974). Com sweetener industry. In I. E. Inglett (Ed.), Symposium: Sweeteners. Westport, CT: AVI Publishing.

    Google Scholar 

  • Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23, 1527–1534.

    Article  CAS  Google Scholar 

  • Cunningham, M., & Dorée, C. (1917). Contributions to the chemistry of caramel. Part I. Caramelan. Journal of the Chemical Society, Transactions, 111, 589–608.

    Article  CAS  Google Scholar 

  • Damager, I., Engelsen, S. B., Blennow, A., Møller, B. L., & Motawia, M. S. (2010). First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration. Chemical Reviews, 110(4), 2049–2080.

    Article  CAS  Google Scholar 

  • D’Appolonia, B. L., et al. (1971). Carbohydrates. In Y. Pomeranz (Ed.), Wheat: chemistry and technology. St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Dea, I. C. M., Morris, E. R., Rees, D. A., Welsh, E. J., Barnes, H. A., & Price, J. (1977). Associations of like and unlike polysaccharides: Mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydrate Research, 57, 249.

    Article  CAS  Google Scholar 

  • Dea, I. C. M., & Morrison, A. (1975). Chemistry and interactions of seed galactomannans. Advances in Carbohydrate Chemistry and Biochemistry, 31, 241–312.

    Article  CAS  Google Scholar 

  • deMan, J. M., Stanley, D. W., & Rasper, V. (1975). Composition of Ontario soybeans and soymilk. Canadian Institute of Food Science and Technology Journal, 8, 1–8.

    Article  CAS  Google Scholar 

  • deMan, L., deMan, J. M., & Buzzell, R. I. (1987). Composition and properties of soymilk and tofu made from Ontario light hilum soybeans. Canadian Institute of Food Science and Technology Journal, 20, 363–367.

    Article  Google Scholar 

  • Descamps, O., Langevin, P., & Combs, D. H. (1986). Physical effect of starch/carrageenan interactions in water and milk. Food Technology, 40(4), 81–88.

    CAS  Google Scholar 

  • Dreher, M. L. (1987). Handbook of dietary fiber: An applied approach. New York: Marcel Dekker.

    Google Scholar 

  • Dziezak, J. D. (1987). Crystalline fructose: A breakthrough in corn sweetener process technology. Food Technology, 41(1), 66–67, 72.

    Google Scholar 

  • Eggleston, G. (2008). Sucrose and related oligosaccharides. In K. T. Fraser-Reid & J. Thiem (Eds.), Glycoscience (pp. 1163–1182). Berlin: Springer-Verlag. Chapter 5.

    Chapter  Google Scholar 

  • Eggleston, G., & Côté, G. (2003). Oligosaccharides in food and agriculture. In G. Eggleston & G. Côté (Eds.), Oligosaccharides in food and agriculture, ACS Symposium Series 849 (pp. 1–64). Oxford: Oxford University Press. Chapter 1.

    Chapter  Google Scholar 

  • Eggleston, G., Monge, A., & Ogier, B. (2003). Sugarcane factory performance of cold, intermediate, and hot lime clarification systems. Journal of Food Processing and Preservation, 26, 433–454.

    Article  Google Scholar 

  • Eggleston, G., Legendre, B. L., & Godshall, M. A. (2017). Sugars and other sweeteners. In Handbook of industrial chemistry and biotechnology (13th ed.). Boston, MA: Springer. in press.

    Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(2), 33–35.

    Google Scholar 

  • Englyst, H. N., Trowell, H., Southgate, D. A. T., & Cummings, J. H. (1987). Dietary fiber and resistant starch. The American Journal of Clinical Nutrition, 46, 873.

    Article  CAS  Google Scholar 

  • Feather, M. S., & Harris, J. F. (1973). Dehydration reactions of carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, 28, 161–224.

    Article  CAS  Google Scholar 

  • Furda, I. (1981). Simultaneous analysis of soluble and insoluble dietary fiber. In W. P. I. James & O. Theander (Eds.), The analysis of dietary fiber in food. New York: Marcel Dekker.

    Google Scholar 

  • Gelis, M. A. (1858). Technical study of caramel. Annales de Chimie Physique, 3, 352–404.

    Google Scholar 

  • Gidley, M. J., Hanashiro, I., Hani, N. M., Hill, S. E., Huber, A., Jane, J.-L., Liu, Q., Morris, G. A., Striegel, A. M., & Gilbert, R. G. (2010). Reliable measurements of the size distributions of starch molecules in solution: Current dilemmas and recommendations. Carbohydrate Polymers, 79, 255–261.

    Article  CAS  Google Scholar 

  • Glicksman, M. (1969). Gum technology in the food industry. New York: Academic Press.

    Google Scholar 

  • Hedges, A. R. (1998). Industrial applications of cyclodextrins. Chemical Reviews, 98(5), 2035–2044.

    Article  CAS  Google Scholar 

  • Heume, M., & Rapaille, A. (1996). Versatility of maltitol in different forms as a sugar substitute. In T. H. Grenby (Ed.), Advances in sweeteners. London: Blackie Academic and Professional.

    Google Scholar 

  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydrate Polymers, 45, 253–267.

    Article  CAS  Google Scholar 

  • Hoseny, R. C. (1984). Functional properties of pentosans in baked foods. Food Technology, 38(1), 114–117.

    Google Scholar 

  • Hudson, C. S. (1907). Catalysis by acids and bases of the mutarotation of glucose. Journal of the American Chemical Society, 29, 1571–1574.

    Article  Google Scholar 

  • Imbert, A., Chanzy, H., Pérez, S., Buléon, A., & Tran, V. (1988). The double-helical nature of the crystalline part of A-starch. Journal of Molecular Biology, 201(2), 365–378.

    Article  Google Scholar 

  • Ink, S. L., & Hurt, H. D. (1987). Nutritional implications of gums. Food Technology, 41(1), 77–82.

    CAS  Google Scholar 

  • Jansson, P. E., Kenne, L., & Lindberg, B. (1975). Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 45, 275–282.

    Article  CAS  Google Scholar 

  • Jenness, R. (1959). In S. Patton (Ed.), Principles of dairy chemistry. New York: Wiley.

    Google Scholar 

  • Jobling, S. (2004). Improving starch for food and industrial applications. Current Opinion in Plant Biology, 7(2), 210–218.

    Article  CAS  Google Scholar 

  • Juna, S., Williams, P. A., & Davies, S. (2011). Determination of molecular mass distribution of amylopectin using asymmetrical flow field-flow fractionation. Carbohydrate Polymers, 83, 1384–1396.

    Article  CAS  Google Scholar 

  • Jurch Jr., G. R., & Tatum, J. H. (1970). Degradation of D-glucose with acetic acid and methyl amine. Carbohydrate Research, 15, 233–239.

    Article  CAS  Google Scholar 

  • Kandler, O., & Hopf, H. (1980). In J. Preiss (Ed.), The biochemistry of plants (Vol. 3, pp. 221–270). New York: Academic Press.

    Google Scholar 

  • Kennedy, J. F. (1985). Oligosaccharide component composition and storage properties of commercial low DE maltodextrins and their further modification by enzymatic treatment. Starch, 37, 343–351.

    Article  CAS  Google Scholar 

  • Kirkensgaard, K. G., Hägglund, P., Shahpiri, A., Finnie, C., Henriksen, A., & Svensson, B. (2014). A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase. Proteins, 82(4), 607–619.

    Google Scholar 

  • Lappalainen, M., Pitkanen, I., Heikkila, H., & Nurmi, J. (2006). Melting behavior and evolved gas analysis of xylose. Journal of Thermal Analysis and Calorimetry, 84, 367–376.

    Article  CAS  Google Scholar 

  • Lehmann, U., & Robin, F. (2007). Slowly digestible starch—Its structure and health implications: A review. Trends in Food Science & Technology, 18, 346–355.

    Google Scholar 

  • Li, J.-Y., & Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50, 141–148.

    Article  Google Scholar 

  • Lomako, J., Lomako, W. M., & Whelan, W. J. (2004). Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochimica et Biophysica Acta, 1673, 45–55.

    Article  CAS  Google Scholar 

  • Luallen, T. E. (1985). Starch as a functional ingredient. Food Technology, 39(1), 59–63.

    Google Scholar 

  • Manners, D. J. (1991). Recent developments in our understanding of glycogen structure. Carbohydrate Polymers, 16, 37–82.

    Article  CAS  Google Scholar 

  • Martin, L. F. (1955). Applications of research to problems of candy manufacture. Advances in Food Research, 6, 1–66.

    Article  CAS  Google Scholar 

  • McArdle, W. D., Katch, F. I., & Katch, V. I. (2006). Exercise physiology: energy, nutrition, and human performance (6th ed.p. 12). Baltimore, MD: Lippincott Williams & Wilkins.

    Google Scholar 

  • Melton, L. D., Mindt, L., Rees, D. A., & Sanderson, G. R. (1976). Covalent structure of the extracelluloar polysaccharide of Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydrate Research, 46, 245–257.

    Article  CAS  Google Scholar 

  • Mleko, S., Li-Chan, E. C. Y., & Pikus, S. (1997). Interaction of carrageenan with whey proteins in gels formed at different pH. Food Research International, 30, 427–434.

    Article  CAS  Google Scholar 

  • Morris, E. R., Rees, D. A., Young, G., Walkinshaw, M. D., & Darke, A. (1977). Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. Carbohydrate Research, 110, 1–16.

    CAS  Google Scholar 

  • Oates, C. G. (1997). Towards an understanding of starch granule structure and hydrolysis. Trends in Food Science and Technology, 8, 375–382.

    Article  CAS  Google Scholar 

  • Okenfull, D. G. (1991). The chemistry of high methoyxl pectins. In R. H. Walter (Ed.), The chemistry and technology of pectin. New York: Academic Press.

    Google Scholar 

  • Olsen, H. S. (1995). Enzymic production of glucose syrups. In M. W. Kearsley & S. Z. Dziedzic (Eds.), Handbook of starch hydrolysis products and their derivatives. London: Chapman and Hall.

    Google Scholar 

  • Parker, R., & Ring, S. G. (2001). Aspects of the physical chemistry of starch. Journal of Cereal Science, 34, 1–17.

    Article  CAS  Google Scholar 

  • Pictet, A., & Strieker, P. (1924). Constitution and synthesis of isosacchrosan. Helvetica Chimica Acta, 7, 708–713.

    Article  CAS  Google Scholar 

  • Pictet, A., & Adrianoff, N. (1924). De l’action de la chaleur sur le saccharose. Helvetica Chimica Acta, 7, 703–707.

    Article  CAS  Google Scholar 

  • Pollard, A., & Timberlake, C. F. (1971). Fruit juices. In A. C. Hulme, A. Pollard, & C. F. Timberlake (Eds.), The biochemistry of fruits and their products. New York: Academic Press.

    Google Scholar 

  • Pszczola, D. E. (1988). Production and potential food applications of cyclodextrins. Food Technology, 42(1), 96–100.

    Google Scholar 

  • Raemy, A., Hurrell, R. F., & Löliger, J. (1983). Thermal behavior of milk powders studied by differential thermal analysis and heat flow calorimetry. Thermochimica Acta, 65, 81–92.

    Article  CAS  Google Scholar 

  • Raghavan, S. L., Ristic, R. I., Sheen, D. B., Sherwood, J. N., Trowbridge, L., & York, P. (2000). Morphology of crystals of α-lactose hydrate grown from aqueous solution. Journal of Physical Chemistry B, 104, 12256–12262.

    Article  CAS  Google Scholar 

  • Ranhotra, G. S., Gelroth, J. A., Astroth, K., & Eisenbraun, G. J. (1991). Effect of resistant starch on intestinal responses in rats. Cereal Chemistry, 68, 130.

    CAS  Google Scholar 

  • Rees, D. (1977). Polysaccharide shapes outline studies in biology. London: Chapman and Hill.

    Book  Google Scholar 

  • Roos, Y. H., & Karel, M. (1991a). Amorphous state and delayed ice formation in sucrose solutions. International Journal of Food Science and Technology, 26, 553–566.

    Article  Google Scholar 

  • Roos, Y. H., & Karel, M. (1991b). Phase transitions of amorphous sucrose and frozen sucrose solutions. Journal of Food Science, 56, 266–267.

    Article  CAS  Google Scholar 

  • Roos, Y. H., & Karel, M. (1991c). Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnology Progress, 7, 49–53.

    Article  CAS  Google Scholar 

  • Roos, Y. H., & Karel, M. (1991d). Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. Journal of Food Science, 56, 1676–1681.

    Article  CAS  Google Scholar 

  • Roos, Y. H., & Karel, M. (1992). Crystallization of amorphous lactose. Journal of Food Science, 57, 775–777.

    Article  CAS  Google Scholar 

  • Roos, Y. H. (1993). Melting and glass transitions of low molecular weight carbohydrates. Carbohydrate Research, 238, 39–48.

    Article  CAS  Google Scholar 

  • Sabadini, E., Cosgrove, T., & Egídio Fdo, C. (2006). Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study. Carbohydrate Research, 341(2), 270–274.

    Article  CAS  Google Scholar 

  • Sajilata, G., Singhal, R. S., & Kulkarni, P. R. (2010). Resistant starch. A review. Comprehensive Reviews in Food Science, 5, 1–17.

    Article  Google Scholar 

  • Sarkanen, K. V., & Ldwig, C. H. (1971). Lignins: Occurrence, formation, structure and reactions. New York: Wiley Interscience.

    Google Scholar 

  • Schneeman, B. O. (1986). Dietary fiber: Physical and chemical properties, methods of analysis, and physiological effects. Food Technology, 40(2), 104–110.

    CAS  Google Scholar 

  • Sengar, G., & Sharma, H. K. (2014). Food caramels: A review. Journal of Food Science and Technology, 51(9), 1686–1696.

    Article  CAS  Google Scholar 

  • Shallenberger, R. S., & Birch, G. G. (1975). Sugar chemistry. Westport, CT: AVI Publishing.

    Google Scholar 

  • Singh, N., Singh, J., Kaur, L., Singh Sodhi, N., & Singh Gill, B. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219–231.

    Article  CAS  Google Scholar 

  • Smidsrod, O. (1974). Molecular basis for some physical properties of alginates in the gel state. Faraday Discussions of the Chemical Society, 57, 263–274.

    Google Scholar 

  • Smiles, R. E. (1982). The functional applications of polydextrose. In G. Charalambous & G. Inglett (Eds.), Chemistry of foods and beverages: Recent developments. New York: Academic Press.

    Google Scholar 

  • Smythe, B. M. (1971). Sucrose crystal growth. Sugar Technology Reviews, 1, 191–231.

    CAS  Google Scholar 

  • Southgate, D. A. T. (1981). Use of the Southgate method for unavailable carbohydrate in the measurement of dietary fiber. In W. P. I. James & O. Theander (Eds.), The analysis of dietary fiber in food. New York: Marcel Dekker.

    Google Scholar 

  • Spiegel, J. E., Rose, R., Karabell, P., Frankos, V. H., & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology, 48(1), 85–89.

    CAS  Google Scholar 

  • Stephen, A. M. (1995). Food polysaccharides and their applications. New York: Marcel Dekker.

    Google Scholar 

  • Szejtli, J. (1984). Highly soluble β-cyclodextrin derivatives. Starch, 36, 429–432.

    Article  CAS  Google Scholar 

  • Tang, H., Mitsunaga, T., & Kawamura, Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 63, 555–560.

    Article  CAS  Google Scholar 

  • Thompson, A. (1954). Acid reversion products from D-glucose. Journal of the American Chemical Society, 76, 1309–1311.

    Article  CAS  Google Scholar 

  • van Soest, P. J. (1963). Use of detergents in the analysis of fibrous seeds. II. A rapid method for the determination of fiber and lignin. Journal of Association of Official Analytical Chemists, 48, 829–835.

    Google Scholar 

  • van de Velde, F., van Riel, J., & Tromp, R. H. (2002). Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). Journal of the Science of Food and Agriculture, 82(13), 1528–1536.

    Article  CAS  Google Scholar 

  • von Elbe, G. (1936). The nature of sucrose caramel. Journal of the American Chemical Society, 58, 600–601.

    Article  Google Scholar 

  • Vorwerg, W., Radosta, S., & Leibnitz, E. (2002). Study of a preparative-scale process for the production of amylase. Carbohydrate Polymers, 47, 181–189.

    Article  CAS  Google Scholar 

  • Wang, B., Krafczyk, S., & Follner, H. (2000). Growth mechanism of sucrose in pure solutions and in the presence of glucose and fructose. Crystal Growth, 219, 67–74.

    Article  CAS  Google Scholar 

  • Washüttl, J., Reiderer, P., & Bancher, E. (1973). A qualitative and quantitative study of sugar-alcohols in several foods: A research role. Journal of Food Science, 38, 1262–1263.

    Article  Google Scholar 

  • Whistler, R. L., & Paschall, E. E. (1967). Starch: Chemistry and technology, Industrial aspects (Vol. 2). New York: Academic Press.

    Google Scholar 

  • Whistler, R. L., & BeMiller, J. (1973). Industrial gums: Polysaccharides and their derivatives. New York: Academic Press.

    Google Scholar 

  • Whitcomb, P. J., Ek, B. J., & Macosko, C. W. (1977). Rheology of xanthan gum solutions. Extracellular Microbial Polysaccharides, ACS Symposium Series, 45(12), 160–173.

    Google Scholar 

  • Wu, H. C., & Sarko, A. (1978). The double helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61, 7.

    Article  CAS  Google Scholar 

  • Wurzburg, O. B. (1995). Modified starches. In A. M. Stephen (Ed.), Food polysaccharides and their applications. New York: Marcel Dekker.

    Google Scholar 

  • Ziesenitz, S. C. (1996). Basic structure and metabolism of isomalt. In T. H. Grenby (Ed.), Advances in sweeteners. London: Blackie Academic and Professional.

    Google Scholar 

  • Zilversmit, D. B., Disease, R., Levy, B., & Press, N. Y. (1979). Dietary fiber. In R. Levy, B. Rifkind, B. Dennis, & N. Ernst (Eds.), Nutrition, lipids, and coronary heart disease (pp. 149–174). New York, NY: Raven Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian Eggleston .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eggleston, G., Finley, J.W., deMan, J.M. (2018). Carbohydrates. In: Principles of Food Chemistry. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63607-8_4

Download citation

Publish with us

Policies and ethics