Abstract
Predicting the fast-rising young researchers (the Academic Rising Stars) in the future provides useful guidance to the research community, e.g., offering competitive candidates to university for young faculty hiring as they are expected to have success academic careers. In this work, given a set of young researchers who have published the first first-author paper recently, we solve the problem of how to effectively predict the top \(k\%\) researchers who achieve the highest citation increment in \(\varDelta t\) years. We explore a series of factors that can drive an author to be fast-rising and design a novel pairwise citation increment ranking (PCIR) method that leverages those factors to predict the academic rising stars. Experimental results on the large ArnetMiner dataset with over 1.7 million authors demonstrate the effectiveness of PCIR. Specifically, it outperforms all given benchmark methods, with over 8% average improvement. Further analysis demonstrates that temporal features are the best indicators for rising stars prediction, while venue features are less relevant.
Keywords
- Scientific impact prediction
- Bayesian personalized ranking
- Data engineering
This is a preview of subscription content, access via your institution.
Buying options



References
Bethard, S., Jurafsky, D.: Who should i cite: learning literature search models from citation behavior. In: CIKM (2010)
Dong, Y., Johnson, R.A., Chawla, N.V.: Will this paper increase your h-index?: scientific impact prediction. In: WSDM (2015)
Li, L., Tong, H., Tang, J., Fan, W.: ipath: forecasting the pathway to impact. In: SDM (2016)
Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Coauthorship and citation patterns in the physical review. Phys. Rev. E 88(1), 012814 (2013)
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab (1999)
Petersen, A.M., Fortunato, S., Pan, R.K., Kaski, K., Penner, O., Rungi, A., Riccaboni, M., Stanley, H.E., Pammolli, F.: Reputation and impact in academic careers. Proc. Natl. Acad. Sci. U.S.A. 111(43), 15316–15321 (2014)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI (2009)
Shen, H.-W., Wang, D., Song, C., Barabási, A.-L.: Modeling and predicting popularity dynamics via reinforced poisson processes. In: AAAI (2014)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Arnetminer, Z.: Extraction and mining of academic social networks. In: KDD (2008)
Wang, D., Song, C., Barabási, A.-L.: Quantifying long-term scientific impact. Science 342(6154), 127–132 (2013)
Yan, R., Huang, C., Tang, J., Zhang, Y., Li, X.: To better stand on the shoulder of giants. In: JCDL (2012)
Yan, R., Tang, J., Liu, X., Shan, D., Li, X.: Citation count prediction: learning to estimate future citations for literature. In: CIKM (2011)
Zhang, C., Yu, L., Lu, J., Zhou, T., Zhang, Z.-K.: AdaWIRL: a novel bayesian ranking approach for personal big-hit paper prediction. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016. LNCS, vol. 9659, pp. 342–355. Springer, Cham (2016). doi:10.1007/978-3-319-39958-4_27
Acknowledgements
This work was partially supported by Natural Science Foundation of China (Grant Nos. 61673151, 61503110 and 61433014), Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY14A050001 and LQ16F030006).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhang, C., Liu, C., Yu, L., Zhang, ZK., Zhou, T. (2017). Identifying the Academic Rising Stars via Pairwise Citation Increment Ranking. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10366. Springer, Cham. https://doi.org/10.1007/978-3-319-63579-8_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-63579-8_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63578-1
Online ISBN: 978-3-319-63579-8
eBook Packages: Computer ScienceComputer Science (R0)