Bus-OLAP: A Bus Journey Data Management Model for Non-on-time Events Query

  • Tinghai Pang
  • Lei Duan
  • Jyrki Nummenmaa
  • Jie Zuo
  • Peng Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10367)

Abstract

Increasing the on-time rate of bus service can prompt the people’s willingness to travel by bus, which is an effective measure to mitigate the city traffic congestion. Performing queries on the bus arrival can be used to identify and analyze various kinds of non-on-time events that happened during the bus journey, which is helpful for detecting the factors of delaying events, and providing decision support for optimizing the bus schedules. We propose a data management model, called Bus-OLAP, for querying bus monitoring data, considering the characteristics of bus monitoring data and the scenarios of on-time analysis. While fulfilling typical requirements of bus monitoring data analysis, Bus-OLAP not only provides a flexible way to manage the data and to implement multiple granularity data query and update, but also supports distributed query and computation. The experiments on real-world bus monitoring data verify that Bus-OLAP is effective and efficient.

Keywords

Data management OLAP Parallel computing 

References

  1. 1.
    Chen, M., Liu, Y., Yu, X.: Predicting next locations with object clustering and trajectory clustering. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 344–356. Springer, Cham (2015). doi:10.1007/978-3-319-18032-8_27 CrossRefGoogle Scholar
  2. 2.
    Eldawy, A., Mokbel, M.F.: A demonstration of spatialhadoop: an efficient mapreduce framework for spatial data. Proc. VLDB Endow. 6(12), 1230–1233 (2013)CrossRefGoogle Scholar
  3. 3.
    Ghosh, B., Basu, B., O’Mahony, M.: Multivariate short-term traffic flow forecasting using time-series analysis. IEEE Trans. Intell. Transp. Syst. 10(2), 246–254 (2009)CrossRefGoogle Scholar
  4. 4.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of Annual Meeting on SIGMOD 1984, pp. 47–57 (1984)Google Scholar
  5. 5.
    Han, Y., Moutarde, F.: Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization. Int. J. Intell. Transp. Syst. Res. 14(1), 36–49 (2016)Google Scholar
  6. 6.
    Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: iDistance: an adaptive B\({}^{\text{+ }}\)-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)CrossRefGoogle Scholar
  7. 7.
    Kong, X., Xu, Z., Shen, G., Wang, J., Yang, Q., Zhang, B.: Urban traffic congestion estimation and prediction based on floating car trajectory data. Future Gener. Comput. Syst. 61, 97–107 (2016)CrossRefGoogle Scholar
  8. 8.
    Liu, D., Chen, H., Qi, H., Yang, B.: Advances in spatiotemporal data mining. J. Comput. Res. Dev. 50(2), 225–239 (2013)Google Scholar
  9. 9.
    Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On mining anomalous patterns in road traffic streams. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011. LNCS, vol. 7121, pp. 237–251. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25856-5_18 CrossRefGoogle Scholar
  10. 10.
    Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: Proceedings of the 13th International Conference on Data Engineering, pp. 422–432 (1997)Google Scholar
  11. 11.
    Stathopoulos, A., Karlaftis, M.G.: A multivariate state space approach for urban traffic flow modeling and prediction. Transp. Res. Part C Emerg. Technol. 11(2), 121–135 (2003)CrossRefGoogle Scholar
  12. 12.
    Syrjärinne, P., Nummenmaa, J.: Improving usability of open public transportation data. In: 22nd ITS World Congress, pp. 5–9 (2015)Google Scholar
  13. 13.
    Ting, R.H., De Almeida, T., Ding, Z.: Modeling and querying moving objects in networks. Int. J. VLDB 15(2), 165–190 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Papageorgiou, M., Messmer, A.: Real-time freeway traffic state estimation based on extended kalman filter: a case study. Transp. Sci. 41(2), 167–181 (2007)CrossRefGoogle Scholar
  15. 15.
    Wu, X., Duan, L., Pang, T., Nummenmaa, J.: Detection of statistically significant bus delay aggregation by spatial-temporal scanning. APWeb 2016. LNCS, vol. 9865, pp. 277–288. Springer, Cham (2016). doi:10.1007/978-3-319-45835-9_24 CrossRefGoogle Scholar
  16. 16.
    Xia, D., Li, H., Wang, B., Li, Y.: A map reduce-based nearest neighbor approach for big-data-driven traffic flow prediction. IEEE Access 4, 2920–2934 (2016)CrossRefGoogle Scholar
  17. 17.
    Xie, X., Xiong, Z., Hu, X., Zhou, G., Ni, J.: On massive spatial data retrieval based on spark. In: Chen, Y., et al. (eds.) WAIM 2014. LNCS, vol. 8597, pp. 200–208. Springer, Cham (2014). doi:10.1007/978-3-319-11538-2_19 Google Scholar
  18. 18.
    Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: Proceedings of the 21st International Conference on Data Engineering, pp. 631–642 (2005)Google Scholar
  19. 19.
    Yuan, J., Zheng, Y., Zhang, L., Xie, X., Sun, G.: Where to find my next passenger. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 109–118 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tinghai Pang
    • 1
  • Lei Duan
    • 1
  • Jyrki Nummenmaa
    • 2
    • 3
  • Jie Zuo
    • 1
  • Peng Zhang
    • 1
  1. 1.School of Computer ScienceSichuan UniversityChengduChina
  2. 2.Faculty of Natural SciencesUniversity of TampereTampereFinland
  3. 3.Sino-Finnish CentreTongji UniversityShanghaiChina

Personalised recommendations