Skip to main content

Myoinositol and Inositol Hexakisphosphate in the Treatment of Breast Cancer: Molecular Mechanisms

Part of the ISGE Series book series (ISGE)

Abstract

Studies on myoinositol (Myo-Ins) and its main phosphate derivative—inositol hexakisphosphate (InsP6)—are gaining momentum given the critical role they play in a number of diseases, including cancer. Namely, in breast tumors, inositol content and metabolism have been demonstrated to be significantly deregulated. On the other hand, inositol supplementation reduces cell growth by inhibiting pRB phosphorylation and consequently the pRB/E2F complexes formation, a key step during cell cycle progression. Inositols severely decrease PI3K levels, thus counteracting the activation of the PKC/RAS/ERK pathway downstream of PI3K activation. Upstream of that pathway, inositols disrupt the ligand interaction between FGF and its receptor as well as with the EGF-transduction processes involving IGF-II receptor and AP-1 complexes. Additionally, Akt activation is severely weakened upon inositol addition. Downregulation of both Akt and ERK leads consequently to NF-κB inhibition and reduced expression of inflammatory markers, like COX-2 and PGE2. Remarkably, inositol-induced downregulation of presenilin-1 interferes with the epithelial-mesenchymal transition and reduces Wnt activation, β-catenin translocation, Notch-1, N-cadherin, and SNAI1 release. Inositols interfere also directly with different cytoskeleton components, by upregulating focal adhesion kinase and E-cadherin, and decreasing fascin and cofilin, leading hence to invasiveness inhibition. The inositol-induced impairment of both metalloproteinases and ROCK1/2 release further reinforces the negative modulation on cell motility. Overall, these effects enable inositols in remodeling the cytoskeleton architecture and the cell-microenvironment interplay.

Keywords

  • Myoinositol
  • Inositol hexakisphosphate
  • Breast cancer
  • Cytoskeleton
  • Tumor microenvironment

This is a preview of subscription content, access via your institution.

Fig. 20.1

References

  1. Bizzarri M, Fuso A, Dinicola S et al (2016) Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 12(10):1181–1196

    CAS  CrossRef  PubMed  Google Scholar 

  2. Vucenik I, Tantivejkul K, Ramakrishna G et al (2005) Inositol hexaphosphate (IP6) blocks proliferation of breast cancer cells through PKCδ-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation. Breast Cancer Res Treat 91:35–45

    CAS  CrossRef  PubMed  Google Scholar 

  3. Shamsuddin AM, Yang GY, Vucenik I (1996) Novel anti-cancer functions of IP6: growth inhibition and differentiation of human mammary cancer cell lines in vitro. Anticancer Res 16:3287–3292

    CAS  PubMed  Google Scholar 

  4. Vucenik I, Kalebic T, Tantivejkul K et al (1998b) Novel anticancer function of inositol hexaphosphate: inhibition of human rhabdomyosarcoma in vitro and in vivo. Anticancer Res 18:1377–1384

    CAS  PubMed  Google Scholar 

  5. Ferry S, Matsuda M, Yoshida H, Hirata M (2002) Inositol hexakisphosphate blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NFkB-mediated cell survival pathway. Carcinogenesis 23:2031–2041

    CAS  CrossRef  PubMed  Google Scholar 

  6. Tantivejkul K, Vucenik I, Eiseman J et al (2003) Inositol hexaphosphate (IP6) enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer. Breast Cancer Res Treat 79:301–312

    CAS  CrossRef  PubMed  Google Scholar 

  7. Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778S–3784S

    CAS  CrossRef  PubMed  Google Scholar 

  8. Sakamoto K, Venkatraman G, Shamsuddin AM (1993) Growth inhibition and differentiation of HT-29 cells in vitro by inositol hexaphosphate (phytic acid). Carcinogenesis 14:1815–1819

    CAS  CrossRef  PubMed  Google Scholar 

  9. Yang GY, Shamsuddin AM (1995) IP6-induced growth inhibition and differentiation of HT-29 human colon cancer cells: involvement of intracellular inositol phosphates. Anticancer Res 15:2479–2487

    CAS  PubMed  Google Scholar 

  10. Pittet D, Schlegel W, Lew DP et al (1989) Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J Biol Chem 264:18489–18493

    CAS  PubMed  Google Scholar 

  11. Weglarz L, Molin I, Orchel A et al (2006) Quantitative analysis of the level of p53 and p21WAF1 mRNA in human colon cancer HT-29 cells treated with inositol hexaphosphate. Acta Biochim Pol 53(2):349–356

    CAS  PubMed  Google Scholar 

  12. Roy S, Gu M, Ramasamy K et al (2009) p21/Cip1 and p27/Kip1 are essential molecular targets of inositol hexaphosphate for its antitumor efficacy against prostate cancer. Cancer Res 69(3):1166–1173

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Liu Q, Lantry LE et al (2000) Germ-line p53 mutation accelerates pulmonary tumorigenesis: p53-independent efficacy of chemopreventive agents green tea or dexamethasone/myo -inositol and chemotherapeutic agents taxol or adriamycin. Cancer Res 60(4):901–907

    CAS  PubMed  Google Scholar 

  14. Koguchi T, Tanikawa C, Mori J et al (2016) Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol 48(6):2415–2424

    CAS  CrossRef  PubMed  Google Scholar 

  15. Diallo JS, Betton B, Parent N et al (2008) Enhanced killing of androgen independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors. Br J Cancer 99:1613–1622

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Beckonert O, Monnerjahn J, Bonk U et al (2003) Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed 16(1):1–11

    CAS  CrossRef  PubMed  Google Scholar 

  17. Liu G, Song Y, Cui L et al (2015) Inositol hexakisphosphate suppresses growth and induces apoptosis in HT-29 colorectal cancer cells in culture: PI3K/Akt pathway as a potential target. Int J Clin Exp Pathol 8(2):1402–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang C, Ma W, Hecht SS et al (1997) Inositol hexaphosphate inhibits cell transformation and activator protein 1 activation by targeting phosphatidylinositol-3′ kinase. Cancer Res 57:2873–2878

    CAS  PubMed  Google Scholar 

  19. Dinicola S, Fabrizi G, Masiello MG et al (2016) Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Exp Cell Res 345(1):37–50

    CAS  CrossRef  PubMed  Google Scholar 

  20. Gu M, Roy S, Raina K et al (2009) Inositol hexaphosphate suppresses growth and induces apoptosis in prostate carcinoma cells in culture and nude mouse xenograft: PI3K-Akt pathway as potential target. Cancer Res 69(24):9465–9472

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Han W, Gills JJ, Memmott RM et al (2009) The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res 2(4):370–376

    CAS  CrossRef  Google Scholar 

  22. Vucenik I, Tomazic VJ, Fabian D et al (1992) Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and metastatic fibrosarcoma, a pilot study. Cancer Lett 65:9–13

    CAS  CrossRef  PubMed  Google Scholar 

  23. Tantivejkul K, Vucenik I, Shamsuddin AM (2003) Inositol hexaphosphate (IP6) inhibits key events of cancer metastases: I. In vitro studies of adhesion, migration and invasion of MDA--MB 231 human breast cancer cells. Anticancer Res 23:3671–3679

    CAS  PubMed  Google Scholar 

  24. Luu HH, Zhang R, Haydon RCC et al (2004) Wnt/𝛽-catenin signaling pathway as novel cancer drug targets. Curr Cancer Drug Targets 4(8):653–671

    Google Scholar 

  25. Shafie NH, Mohd Esa N, Ithnin H et al (2013) Preventive inositol hexakisphosphate extracted from rice bran inhibits colorectal cancer through involvement of Wnt/𝛽-catenin and COX-2 pathways. Biomed Res Int 2013:681027

    Google Scholar 

  26. Liao J, Seril DN, Yang AL et al (2007) Inhibition of chronic ulcerative colitis associated adenocarcinoma development in mice by inositol compounds. Carcinogenesis 28:446–454

    CAS  CrossRef  PubMed  Google Scholar 

  27. Kamp DW, Israbian VA, Yeldandi AV et al (1995) Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol Pathol 23:689–695

    CAS  CrossRef  PubMed  Google Scholar 

  28. Weglarz L, Wawszczyk J, Orchel A et al (2007) Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1beta. Dig Dis Sci 52:93–102

    CAS  CrossRef  PubMed  Google Scholar 

  29. Couchman JR, Vogt S, Lim ST et al (2002) Regulation of inositol phospholipid binding and signaling through syndecan-4. J Biol Chem 277:49296–49303

    CAS  CrossRef  PubMed  Google Scholar 

  30. Morrison RS, Shi E, Kan M et al (1994) Inositol hexakisphosphate (InsP6): an antagonist of fibroblast growth factor receptor binding and activity. In Vitro Cell Dev Biol Anim 30A(11):783–789

    CAS  CrossRef  PubMed  Google Scholar 

  31. Vucenik I, Passaniti A, Vitolo MI et al (2004) Anti-angiogenic potential of inositol hexaphosphate (IP6). Carcinogenesis 25:2115–2123

    CAS  CrossRef  PubMed  Google Scholar 

  32. Kar S, Quirion R, Parent A (1994) An interaction between inositol hexakisphosphate (IP6) and insulin-like growth factor II receptor binding sites in the rat brain. Neuroreport 5:625–628

    CAS  CrossRef  PubMed  Google Scholar 

  33. D’Anna R, Di Benedetto A, Scilipoti A et al (2015) Myo-inositol supplementation for prevention of gestational diabetes in obese pregnant women: a randomized controlled trial. Obstet Gynecol 126(2):310–315

    CrossRef  PubMed  Google Scholar 

  34. Graf E, Eaton JW (1990) Antioxidant functions of phytic acid. Free Radic Biol Med 8:61–69

    CAS  CrossRef  PubMed  Google Scholar 

  35. Rao PS, Liu XK, Das DK et al (1991) Protection of ischemic heart from reperfusion injury by myo-inositol hexakisphosphate, a natural antioxidant. Ann Thorac Surg 52:908–912

    CAS  CrossRef  PubMed  Google Scholar 

  36. Porres JM, Stahl CH, Cheng WH et al (1999) Dietary intrinsic phytate protects colon from lipid peroxidation in pigs with a moderately high dietary iron intake. Proc Soc Exp Biol Med 221:80–86

    CAS  CrossRef  PubMed  Google Scholar 

  37. Druzijanic N, Juricic J, Perko Z et al (2002) IP-6 and inositol: adjuvant to chemotherapy of colon cancer. A pilot clinical trial. Rev Oncol 4:171

    Google Scholar 

  38. Bacić I, Druzijanić N, Karlo R et al (2010) Efficacy of IP6 + inositol in the treatment of breast cancer patients receiving chemotherapy: prospective, randomized, pilot clinical study. J Exp Clin Cancer Res 29:12

    Google Scholar 

  39. Lam S, McWilliams A, LeRiche J et al (2006) A phase I study of myo-inositol for lung cancer chemoprevention. Cancer Epidemiol Biomark Prev 15(8):1526–1531

    CAS  CrossRef  Google Scholar 

  40. Fu M, Song Y, Wen Z et al (2016) Inositol hexaphosphate and inositol inhibit colorectal cancer metastasis to the liver in BALB/c mice. Forum Nutr 8(5):E286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Bizzarri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 International Society of Gynecological Endocrinology

About this chapter

Cite this chapter

Bizzarri, M., Dinicola, S., Cucina, A. (2018). Myoinositol and Inositol Hexakisphosphate in the Treatment of Breast Cancer: Molecular Mechanisms. In: Birkhaeuser, M., Genazzani, A. (eds) Pre-Menopause, Menopause and Beyond. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63540-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63540-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63539-2

  • Online ISBN: 978-3-319-63540-8

  • eBook Packages: MedicineMedicine (R0)