MantisBot Changes Stepping Speed by Entraining CPGs to Positive Velocity Feedback

  • Nicholas S. SzczecinskiEmail author
  • Roger D. Quinn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


This paper demonstrates and analyzes how CPGs can entrain joints of a praying mantis robot (MantisBot) to positive velocity feedback resulting in a duration change of a leg’s stance phase. We use a model of a single leg segment, as well as previously presented design techniques to understand how the gain of positive velocity feedback to the CPGs should be modulated to successfully implement the active reaction (AR) during walking. Our results suggest that the AR simplifies the descending control of walking speed, naturally producing the asymmetrical changes in stance and swing phase duration seen in walking animals. We implement the AR in neural circuits of a dynamic network that control leg joints of MantisBot, and experiments confirm that the robot modulates its walking speed as the simple model predicted. Aggregating the data from hundreds of steps in different walking directions show that the robot changes speed by altering the duration of stance phase while swing phase remains unaffected, as seen in walking animals.


Synthetic Nervous System Locomotion Praying mantis Central pattern generator Active reaction Positive feedback 


  1. 1.
    Cruse, H.: Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. J. Exp. Biol. 116, 343–355 (1985)Google Scholar
  2. 2.
    Gruhn, M., von Uckermann, G., Westmark, S., et al.: Control of stepping velocity in the stick insect Carausius morosus. J. Neurophysiol. 102, 1180–1192 (2009). doi: 10.1152/jn.00257.2009 CrossRefGoogle Scholar
  3. 3.
    Gabriel, J.P., Büschges, A.: Control of stepping velocity in a single insect leg during walking. Philos. Trans. A Math. Phys. Eng. Sci. 365, 251–271 (2007). doi: 10.1098/rsta.2006.1912 CrossRefGoogle Scholar
  4. 4.
    Foth, E., Graham, D.: Influence of loading parallel to the body axis on the walking coordination of an insect – I. Ipsilateral effects. Biol. Cybern. 47, 17–23 (1983). doi: 10.1007/BF00340065 Google Scholar
  5. 5.
    Ryckebusch, S., Laurent, G.: Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neurophysiol. 69, 1583–1595 (1993)Google Scholar
  6. 6.
    Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol. 198, 435–456 (1995)Google Scholar
  7. 7.
    Daun-Gruhn, S., Tóth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J. Comput. Neurosci. (2010). doi: 10.1007/s10827-010-0300-1 Google Scholar
  8. 8.
    Sauer, A.E., Büschges, A., Stein, W.: Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. J. Neurobiol. 32, 359–376 (1997). doi: 10.1002/(SICI)1097-4695(199704)32:4<359:AID-NEU1>3.0.CO;2-5 CrossRefGoogle Scholar
  9. 9.
    Berendes, V., Zill, S.N., Büschges, A., Bockemühl, T.: Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol. (2016). doi: 10.1242/jeb.146720
  10. 10.
    Bässler, U.: Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J. Exp. Biol. 136, 125–147 (1988)Google Scholar
  11. 11.
    Akay, T., Büschges, A.: Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. J. Neurophysiol. 96, 3532–3537 (2006)CrossRefGoogle Scholar
  12. 12.
    Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi: 10.1007/s00422-017-0711-4 MathSciNetGoogle Scholar
  13. 13.
    Cofer, D.W., Cymbalyuk, G., Reid, J., et al.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010). doi: 10.1016/j.jneumeth.2010.01.005 CrossRefGoogle Scholar
  14. 14.
    Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of Current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 442–448 (1952)Google Scholar
  15. 15.
    Selverston, A.I., Moulins, M.: Oscillatory neural networks. Annu. Rev. Physiol. 47, 29–48 (1985)CrossRefGoogle Scholar
  16. 16.
    Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design methodology for synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. (2017, in review)Google Scholar
  17. 17.
    Szczecinski, N.S., Getsy, A.P., Martin, J.P., et al.: MantisBot is a robotic model of visually guided motion in the praying mantis. Arthropod. Struct. Dev. (2017). doi: 10.1016/j.asd.2017.03.001
  18. 18.
    Martin, J.P., Guo, P., Mu, L., et al.: Central-complex control of movement in the freely walking cockroach. Curr. Biol. 25, 2795–2803 (2015). doi: 10.1016/j.cub.2015.09.044 CrossRefGoogle Scholar
  19. 19.
    Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi: 10.1007/s00422-017-0711-4 MathSciNetGoogle Scholar
  20. 20.
    Bässler, U.: The femur-tibia control system of stick insects–a model system for the study of the neural basis of joint control. Brain Res. Rev. 18, 207–226 (1993)CrossRefGoogle Scholar
  21. 21.
    Schmitz, J., Bartling, C., Brunn, D.E., et al.: Adaptive properties of hard-wired neuronal systems. Verh dt zool 88(2), 95–105 (1995)Google Scholar
  22. 22.
    Schmitz, J., Schneider, A., Schilling, M., Cruse, H.: No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker. Appl. Bionics Biomech. 5, 135–147 (2008). doi: 10.1080/11762320802221074 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations