Skip to main content

A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-Like Network

  • Conference paper
  • First Online:
Book cover Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Combining Fable robot, a modular robot, with a neuroinspired controller, we present the proof of principle of a system that can scale to several neurally controlled compliant modules. The motor control and learning of a robot module are carried out by a Unit Learning Machine (ULM) that embeds the Locally Weighted Projection Regression algorithm (LWPR) and a spiking cerebellar-like microcircuit. The LWPR guarantees both an optimized representation of the input space and the learning of the dynamic internal model (IM) of the robot. However, the cerebellar-like sub-circuit integrates LWPR input-driven contributions to deliver accurate corrective commands to the global IM. This article extends the earlier work by including the Deep Cerebellar Nuclei (DCN) and by reproducing the Purkinje and the DCN layers using a spiking neural network (SNN) implemented on the neuromorphic SpiNNaker platform. The performance and robustness outcomes from the real robot tests are promising for neural control scalability.

I.B. Ojeda and S. Tolu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flash, T., Sejnowski, T.J.: Computational approaches to motor control. Curr. Opin. Neurobiol. 6(11), 655–662 (2001)

    Article  Google Scholar 

  2. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  3. Vijayakumar, S., D’souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ito, M.: Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78(3), 272–303 (2006)

    Article  Google Scholar 

  5. Ito, M.: Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)

    Article  Google Scholar 

  6. Dean, P., Porrill, J., Ekerot, C.-F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)

    Article  Google Scholar 

  7. Verduzco-Flores, S.O., O’Reilly, R.C.: How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error. Front. Comput. Neurosci. 9 (2015)

    Google Scholar 

  8. Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10(1), 25–61 (1971)

    Article  Google Scholar 

  9. Marr, D., Thach, W.T.: A theory of cerebellar cortex. In: Vaina, L. (ed.) From the Retina to the Neocortex, pp. 11–50. Springer, Boston (1991)

    Chapter  Google Scholar 

  10. Bell, C.C., Kawasaki, T.: Relations among climbing fiber responses of nearby purkinje cells. J. Neurophysiol. 35(2), 155–169 (1972). http://jn.physiology.org/content/35/2/155

    Google Scholar 

  11. Byadarhaly, K.V., Perdoor, M.C., Minai, A.A.: A modular neural model of motor synergies. Neural Networks 32, 96–108 (2012)

    Article  Google Scholar 

  12. Luque, N.R., Garrido, J.A., Carrillo, R.R., Coenen, O.J., Ros, E.: Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans. Neural Networks 22(8), 1321–1328 (2011)

    Article  Google Scholar 

  13. Luque, N.R., Garrido, J.A., Carrillo, R.R., Tolu, S., Ros, E.: Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int. J. Neural Syst. 21(05), 385–401 (2011)

    Article  Google Scholar 

  14. Garrido, J.A., Luque, N.R., D’Angelo, E., Ros, E.: Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation (2013)

    Google Scholar 

  15. Vannucci, L., Ambrosano, A., Cauli, N., Albanese, U., Falotico, E., Ulbrich, S., Pfotzer, L., Hinkel, G., Denninger, O., Peppicelli, D., Guyot, L., Arnim, A.V., Deser, S., Maier, P., Dillman, R., Klinker, G., Levi, P., Knoll, A., Gewaltig, M.O., Laschi, C.: A visual tracking model implemented on the icub robot as a use case for a novel neurorobotic toolkit integrating brain and physics simulation. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 1179–1184 (2015)

    Google Scholar 

  16. Tolu, S., Vanegas, M., Luque, N.R., Garrido, J.A., Ros, E.: Bio-inspired adaptive feedback error learning architecture for motor control. Biol. Cybern. 106, 507–522 (2012)

    Article  Google Scholar 

  17. Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput. 19(1), 170–193 (2007)

    Article  MATH  Google Scholar 

  18. Tolu, S., Vanegas, M., Garrido, J.A., Luque, N.R., Ros, E.: Adaptive and predictive control of a simulated robot ARM. Int. J. Neural Syst. 23(03), 1350010 (2013)

    Article  Google Scholar 

  19. Su, F., Wang, J., Deng, B., Wei, X.-L., Chen, Y.-Y., Liu, C., Li, H.-Y.: Adaptive control of parkinson039;s state based on a nonlinear computational model with unknown parameters. Int. J. Neural Syst. 25(01), 1450030 (2015)

    Article  Google Scholar 

  20. Yamazaki, T., Igarashi, J.: Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Networks 47, 103–111 (2013)

    Article  Google Scholar 

  21. Casellato, C., Antonietti, A., Garrido, J.A., Carrillo, R.R., Luque, N.R., Ros, E., Pedrocchi, A., D’Angelo, E.: Adaptive robotic control driven by a versatile spiking cerebellar network. PLOS ONE 9(11), 1–17 (2014)

    Article  Google Scholar 

  22. Richter, C., Jentzsch, S., Hostettler, R., Garrido, J.A., Ros, E., Knoll, A., Rohrbein, F., van der Smagt, P., Conradt, J.: Musculoskeletal robots: scalability in neural control. IEEE Robot. Autom. Mag. 23(4), 128–137 (2016)

    Article  Google Scholar 

  23. Pacheco, M., Fogh, R., Lund, H.H., Christensen, D.J.: Fable: A modular robot for students, makers and researchers. In: Proceedings of the IROS workshop on Modular and Swarm Systems: from Nature to Robotics (2014)

    Google Scholar 

  24. Schweighofer, N., Doya, K., Lay, F.: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103(1), 35–50 (2001)

    Article  Google Scholar 

  25. Sjöström, J., Gerstner, W.: Spike-timing dependent plasticity. Spike-timing dependent plasticity, p. 35 (2010)

    Google Scholar 

  26. Davison, A., Brüderle, D., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PYNN: a common interface for neuronal network simulators (2009)

    Google Scholar 

Download references

Acknowledgments

This work has received funding from the EU-H2020 Programme under the grant agreement no. 720270 (Human Brain Project SGA1) and from the Marie Curie project no. 705100 (Biomodular). We are thankful to David Johan Christensen and Moisés Pacheco, CEO/CTO & Co-founders of Shape Robotics, for the Fable robot. A special thank is expressed to the University of Manchester and the University of Munich for SpiNNaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Baira Ojeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baira Ojeda, I., Tolu, S., Lund, H.H. (2017). A Scalable Neuro-inspired Robot Controller Integrating a Machine Learning Algorithm and a Spiking Cerebellar-Like Network. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics