Advertisement

A Biomimetic Vocalisation System for MiRo

  • Roger K. Moore
  • Ben Mitchinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

There is increasing interest in the use of animal-like robots in applications such as companionship and pet therapy. However, in the majority of cases it is only the robot’s physical appearance that mimics a given animal. In contrast, MiRo is the first commercial biomimetic robot to be based on a hardware and software architecture that is modelled on the biological brain. This paper describes how MiRo’s vocalisation system was designed, not using pre-recorded animal sounds, but based on the implementation of a real-time parametric general-purpose mammalian vocal synthesiser tailored to the specific physical characteristics of the robot. The novel outcome has been the creation of an ‘appropriate’ voice for MiRo that is perfectly aligned to the physical and behavioural affordances of the robot, thereby avoiding the ‘uncanny valley’ effect and contributing strongly to the effectiveness of MiRo as an interactive device.

Keywords

Biomimetic robot MiRo Mammalian vocalisation Vocal synthesis 

Notes

Acknowledgements

This work was partially supported by the European Commission [grant numbers EU-FP6-507422, EU-FP6-034434, EU-FP7-231868 and EU-FP7-611971], and the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/I013512/1].

References

  1. 1.
    PARO Therapeutic Robot. http://www.parorobots.com
  2. 2.
    MiRo: The Biomimetic Robot. http://consequentialrobotics.com/miro/
  3. 3.
    Mitchinson, B., Prescott, T.J.: MIRO: a robot “Mammal” with a biomimetic brain-based control system. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 179–191. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_17 CrossRefGoogle Scholar
  4. 4.
    Collins, E.C., Prescott, T.J., Mitchinson, B., Conran, S.: MiRo: a versatile biomimetic edutainment robot. In: 12th International Conference on Advances in Computer Entertainment Technology (ACE 2015), Iskandar, Malaysia, pp. 1–4. ACM Press (2015)Google Scholar
  5. 5.
    Moore, R.K.: A real-time parametric general-purpose mammalian vocal synthesiser. In: INTERSPEECH, San Francisco, CA, pp. 2636–2640 (2016)Google Scholar
  6. 6.
    Hopp, S.L., Evans, C.S.: Acoustic Communication in Animals. Springer Verlag, New York (1998)CrossRefGoogle Scholar
  7. 7.
    Stahl, W.R.: Scaling of respiratory variables in mammals. J. Appl. Physiol. 22(3), 453–460 (1967)Google Scholar
  8. 8.
    Worthington, J., Young, I.S., Altringham, J.D.: The relationship between body mass and ventilation rate in mammals. Exp. Biol. 161, 533–536 (1991)Google Scholar
  9. 9.
    Fletcher, N.H.: A simple frequency-scaling rule for animal communication. J. Acoust. Soc. Am. 115(5), 2334–2338 (2004)CrossRefGoogle Scholar
  10. 10.
    Titze, I.R.: Acoustic interpretation of resonant voice. J. Voice 15(4), 519–528 (2001)CrossRefGoogle Scholar
  11. 11.
    Riede, T., Fitch, T.: Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J. Exp. Biol. 202(20), 2859–2867 (1999)Google Scholar
  12. 12.
    Fitch, W.T., Reby, D.: The descended larynx is not uniquely human. Proc. Roy. Soc. B 268(1477), 1669–1675 (2001)CrossRefGoogle Scholar
  13. 13.
    Robot Operating System (ROS). http://www.ros.org
  14. 14.
    Collins, E.C., Prescott, T.J., Mitchinson, B.: Saying it with light: a pilot study of affective communication using the MIRO robot. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 243–255. Springer, Cham (2015). doi: 10.1007/978-3-319-22979-9_25 CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Moore, R.K.: From talking and listening robots to intelligent communicative machines. In: Markowitz, J. (ed.) Robots That Talk and Listen, pp. 317–335. De Gruyter, Boston (2015)Google Scholar
  17. 17.
    Mori, M.: Bukimi no Tani (The Uncanny Valley). Energy 7, 33–35 (1970)Google Scholar
  18. 18.
    Moore, R.K.: A bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena. Nat. Sci. Rep. 2, 864 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  2. 2.Department of PsychologyUniversity of SheffieldSheffieldUK

Personalised recommendations