Causal Biomimesis: Self-replication as Evolutionary Consequence

  • Gabriel Axel MontesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


For millions of years, hominins have been engaged in tool-making and concomitant experimentation. This cognitive enterprise has eventually led to the creation of synthetic intelligence in the form of complex computing and artificial agents, whose purported purpose is to elucidate the workings of human biology and consciousness, automate tasks, and develop interventions for disease. However, much of the expensive research efforts invested in understanding complex natural systems has resulted in limited rewards for treatment of disease. This paper proposes the novel ‘causal biomimesis’ hypothesis: with respect to the relationship between humans and artificial life, the virtually inevitable intrinsic evolutionary consequence of tool-making and biomimetic efforts—and the capacity for objective thought and the scientific method itself—is the full-scale replication of human cognitive functionality, agency, and potentially consciousness in silico. This self-replication transpires through a cycle of anthropogenic biomimetic auto-catalysis driven by instrumental cognition—from objective reasoning in hominin tool-maker through to post-biological reproduction by synthetic agents—and is self-organized and co-enacted between agent and the produced artefactual aggregates. In light of this radical hypothesis, existential and ethical implications are considered for further exploration.


Artificial intelligence Cognition Biomimetics Neuroscience Neurophenomenology Consciousness Complexity Philosophy Robotics Evolution Psychology Medicine Anthropology Mind-body 


  1. 1.
    Harmand, S., Lewis, J.E., Feibel, C.S., et al.: 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015). doi: 10.1038/nature14464 CrossRefGoogle Scholar
  2. 2.
    DeCasien, A.R., Williams, S.A., Higham, J.P.: Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 112 (2017)CrossRefGoogle Scholar
  3. 3.
    McGinn, C.: Prehension: The Hand and the Emergence of Humanity. MIT Press, Massachusetts (2015)Google Scholar
  4. 4.
    Constantinescu, A.O., O’Reilly, J.X., Behrens, T.E.J.: Organizing conceptual knowledge in humans with a grid like code. Science 352, 1464 (2016). doi: 10.1126/science.aaf0941 CrossRefGoogle Scholar
  5. 5.
    Graziano, M.S., Webb, T.W.: The attention schema theory: a mechanistic account of subjective awareness. Front. Psychol. 6 (2015)Google Scholar
  6. 6.
    Verschure, P.F.M.J.: Synthetic consciousness: the distributed adaptive control perspective. Philos. Trans. R. Soc. B Biol. Sci. (2016). doi: 10.1098/rstb.2015.0448
  7. 7.
    Frith, C.D., Metzinger, T.: What’s the use of consciousness? How the stab of conscience made us really conscious. Pragmatic Turn. (2016). doi: 10.7551/mitpress/9780262034326.003.0012
  8. 8.
    Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). doi: 10.1038/nrn2787 CrossRefGoogle Scholar
  9. 9.
    Tani, J.: Exploring Robotic Minds: Actions, Symbols, and Consciousness as Self-Organizing Dynamic Phenomena. Oxford University Press, Oxford (2016)CrossRefGoogle Scholar
  10. 10.
    Bastos, A.M., Usrey, W.M., Adams, R.A., et al.: Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012). doi: 10.1016/j.neuron.2012.10.038 CrossRefGoogle Scholar
  11. 11.
    Mountcastle, V.: An organizing principle for cerebral function: the unit model and the distributed system (1978)Google Scholar
  12. 12.
    Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt and Company, New York (2007)Google Scholar
  13. 13.
    Barron, A.B., Klein, C.: What insects can tell us about the origins of consciousness. Proc. Nat. Acad. Sci. 113, 4900–4908 (2016)CrossRefGoogle Scholar
  14. 14.
    Feinberg, T.E., Mallatt, J.: The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front. Psychol. 4, 667 (2013)CrossRefGoogle Scholar
  15. 15.
    Menary, R.: The Extended Mind. Bradford Books, Massachusetts (2010)CrossRefGoogle Scholar
  16. 16.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric measure of control. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 128–135 (2005)Google Scholar
  17. 17.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: Tracking information flow through the environment: simple cases of stigmerg. In: Pollack, J. (ed.) Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living System (2004)Google Scholar
  18. 18.
    Von Mises, L.: Human Action: A Treatise on Economics. Yale University Press, New Haven (1949)Google Scholar
  19. 19.
    Gower, B.: Scientific Method: A Historical and Philosophical Introduction. Routledge, London (1997)Google Scholar
  20. 20.
    Kirsh, D., Maglio, P.: On distinguishing epistemic from pragmatic action. Cogn. Sci. 18, 513–549 (1994)CrossRefGoogle Scholar
  21. 21.
    Heersmink, R.: Extended mind and cognitive enhancement: moral aspects of cognitive artifacts. Phenomenol Cogn. Sci. 16, 17–32 (2017)CrossRefGoogle Scholar
  22. 22.
    Tang, Y.-Y., Holzel, B.K., Posner, M.I.: The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225 (2015). doi: 10.1038/nrn3916 CrossRefGoogle Scholar
  23. 23.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Massachusetts (2016)zbMATHGoogle Scholar
  24. 24.
    Donald, M.: Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition. Harvard University Press, Cambridge (1991)Google Scholar
  25. 25.
    Clark, A.: Re-inventing ourselves: The plasticity of embodiment, sensing, and mind. J. Med. Philos. 32, 263–282 (2007)CrossRefGoogle Scholar
  26. 26.
    Prassler, E., Lawitzky, G., Stopp, A., et al.: Advances in Human-Robot Interaction. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Jentsch, F., Barnes, M., Harris, P.D., et al.: Human-Robot Interactions in Future Military Operations. Ashgate Publishing Limited, Aldershot (2012)Google Scholar
  28. 28.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer International Publishing, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  29. 29.
    Coleman, D.: Human-Robot Interactions: Principles, Technologies and Challenges. Nova Science Publishers, Incorporated, New York (2015)Google Scholar
  30. 30.
    Matsuda, G., Hiraki, K., Ishiguro, H.: EEG-based mu rhythm suppression to measure the effects of appearance and motion on perceived human likeness of a robot. J. Hum. Rob. Interact. 5, 68–81 (2015)CrossRefGoogle Scholar
  31. 31.
    Rohde, M., Ikegami, T.: Editorial: agency in natural and artificial systems. Adapt. Behav. 17, 363–366 (2009). doi: 10.1177/1059712309346317 CrossRefGoogle Scholar
  32. 32.
    Aucouturier, J.-J., Ikegami, T.: The illusion of agency: two engineering approaches to compromise autonomy and reactivity in an artificial system. Adapt. Behav. 17, 402–420 (2009). doi: 10.1177/1059712309344420 CrossRefGoogle Scholar
  33. 33.
    Bar-Cohen, Y.: Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  34. 34.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001)CrossRefGoogle Scholar
  35. 35.
    Stewart, J., Stewart, J.R., Gapenne, O., et al.: Enaction: Toward a New Paradigm for Cognitive Science. MIT Press, Massachusetts (2010)CrossRefGoogle Scholar
  36. 36.
    Varela, F.J., Rosch, E., Thompson, E.: The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Massachusetts (1992)Google Scholar
  37. 37.
    Seth, A.K., Verschure, P.F., Morsella, E., et al.: Action-oriented understanding of consciousness and the structure of experience (2016)Google Scholar
  38. 38.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium: Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014)CrossRefGoogle Scholar
  39. 39.
    Geschwind, D.H., Konopka, G.: Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009). doi: 10.1038/nature08537 CrossRefGoogle Scholar
  40. 40.
    Leon, P.S., Knock, S.A., Woodman, M.M., et al.: The Virtual Brain: a simulator of primate brain network dynamics. Inf. Based Methods Neuroimaging Anal. Struct. Funct. Dyn. 8 (2015)Google Scholar
  41. 41.
    Morris, Z.S., Wooding, S., Grant, J.: The answer is 17 years, what is the question: understanding time lags in translational research. J. R. Soc. Med. 104, 510–520 (2011). doi: 10.1258/jrsm.2011.110180 CrossRefGoogle Scholar
  42. 42.
    Voit, E.O., Qi, Z., Kikuchi, S.: Mesoscopic models of neurotransmission as intermediates between disease simulators and tools for discovering design principles. Pharmacopsychiatry 45, S22–S30 (2012). doi: 10.1055/s-0032-1304653 CrossRefGoogle Scholar
  43. 43.
    Shea, N., Boldt, A., Bang, D., et al.: Supra-personal cognitive control and metacognition. Trends Cogn. Sci. 18, 186–193 (2014). doi: 10.1016/j.tics.2014.01.006 CrossRefGoogle Scholar
  44. 44.
    M’Balé, K.M., Josyula, D.: Integrating Metacognition into Artificial Agents, pp. 55–62 (2013)Google Scholar
  45. 45.
    Schmill, M., Oates, T., Anderson, M.L., et al.: The role of metacognition in robust AI systems (2008)Google Scholar
  46. 46.
    Hutto, D.D., Myin, E.: Radicalizing Enactivism: Basic Minds Without Content. MIT Press, Massachusetts (2013)Google Scholar
  47. 47.
    Koestler, A.: The Ghost in the Machine. Hutchinson, Paris (1967)Google Scholar
  48. 48.
    Wilber, K.: Sex, Ecology, Spirituality: The Spirit of Evolution, 2nd edn. Shambhala, Boulder (2001)Google Scholar
  49. 49.
    Slater, M., Sanchez-Vives, M.V.: Enhancing our lives with immersive virtual reality. Front. Rob. AI 3, 74 (2016). doi: 10.3389/frobt.2016.00074 Google Scholar
  50. 50.
    Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  51. 51.
    Ulloa, E.R., Pineda, J.A.: Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. Behav. Brain Res. 183, 188–194 (2007). doi: 10.1016/j.bbr.2007.06.007 CrossRefGoogle Scholar
  52. 52.
    Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013). doi: 10.1017/S0140525X12000477 CrossRefGoogle Scholar
  53. 53.
    Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living. Springer, Netherlands (1991)Google Scholar
  54. 54.
    Freud, S., Strachey, J.: An Outline of Psycho-analysis. W. W. Norton, New York (1989)Google Scholar
  55. 55.
    Jung, C.G.: The Psychology of the Transference. Taylor & Francis, New York (2013)Google Scholar
  56. 56.
    Weinberg, B.H., Pham, N.T.H., Caraballo, L.D., et al.: Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotech 35, 453–462 (2017)CrossRefGoogle Scholar
  57. 57.
    Calvo, R.A., Peters, D.: Positive Computing: Technology for wellbeing and Human Potential. MIT Press, Massachusetts (2014)Google Scholar
  58. 58.
    Calvo, R.A., D’Mello, S., Gratch, J., Kappas, A.: The Oxford Handbook of Affective Computing. Oxford University Press, Oxford (2014)Google Scholar
  59. 59.
    Feuerstein, G., Kak, S.: The Yoga Tradition: Its History, Literature, Philosophy and Practice. Hohm Press, Chino Valley (2013)Google Scholar
  60. 60.
    Vitebsky, P.: Shamanism. University of Oklahoma Press, Norman (2001)Google Scholar
  61. 61.
    James, W.: The Varieties of Religious Experience: A Study in Human Nature. Longmans, Redwood City (1905)Google Scholar
  62. 62.
    Lazar, S.W., Kerr, C.E., Wasserman, R.H., Gray, J.R., Greve, D.N., Treadway, M.T., McGarvey, M., Quinn, B.T., Dusek, J.A., Benson, H., Rauch, S.L.: Meditation experience is associated with increased cortical thickness. NeuroReport 16, 1893–1897 (2005). doi: 10.1097/01.wnr.0000186598.66243.19 CrossRefGoogle Scholar
  63. 63.
    Gard, T., Taquet, M., Dixit, R., et al.: Greater widespread functional connectivity of the caudate in older adults who practice kripalu yoga and vipassana meditation than in controls. Front. Hum. Neurosci. (2015). doi: 10.3389/fnhum.2015.00137
  64. 64.
    Hölzel, B.K., Carmody, J., Vangel, M., et al.: Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 191, 36–43 (2011). doi: 10.1016/j.pscychresns.2010.08.006 CrossRefGoogle Scholar
  65. 65.
    Bostrom, N.: How long before superintelligence? Int. J. Future Stud. 2 (1998)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of NewcastleNewcastleAustralia
  2. 2.Hunter Medical Research InstituteNewcastleAustralia

Personalised recommendations