Advertisement

Towards Identifying Biological Research Articles in Computer-Aided Biomimetics

  • Ruben Kruiper
  • Julian F. V. Vincent
  • Jessica Chen-Burger
  • Marc P. Y. Desmulliez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)

Abstract

When solving engineering problems through biomimetic design, a lack of knowledge of biology often impedes the translation of biological ideas into engineering principles. Specific challenges are the identification, selection and abstraction of relevant biological information. The use of engineering terminology to search for relevant biological information is hypothesised to contribute to the adventitious character of biomimetics. Alternatively, a holistic approach is proposed where a division is made between the analysis of biological research papers and the decomposition of the engineering problem. The aim of a holisitic approach is to take into account the importance of context during analogical problem solving and provide a theoretical framework for the development of Computer-Aided Biomimetics (CAB) tools. Future work will focus on the development of tools that support engineers during the analysis of biological research papers and modelling of biological systems by providing relevant biological knowledge.

Keywords

Biomimetics Computer-Aided Biomimetics (CAB) Trade-offs Problem-solving 

Notes

Acknowledgements

The authors are grateful to Dr. Ing. Robert E. Wendrich and Dr. Rupert Soar for their advice. This PhD research is funded by the EPSRC Centre for Doctoral Training in Embedded Intelligence and the School of Mathematical and Computer Sciences at Heriot-Watt University, Edinburgh, Scotland, UK.

References

  1. Artiga, M.: New perspectives on artifactual and biological functions. Appl. Ontol. 11, 1–9 (2016)CrossRefGoogle Scholar
  2. Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1), 1–8 (1997). doi: 10.1007/s004250050096 CrossRefGoogle Scholar
  3. Bensaude-Vincent, B.: A cultural perspective on biomimetics. In: Nature, pp. 1–12. InTech (2011). doi: 10.5772/10546
  4. Bogatyrev, N., Bogatyrev, O.A.: TRIZ-based algorithm for Biomimetic design. Procedia Eng. 131, 377–387 (2015)CrossRefGoogle Scholar
  5. Brereton, M.: Distributed cognition in engineering design: negotiating between abstract and material representations. In: Goldschmidt, G., Porter, W.L. (eds.) Design representation, pp. 83–103. Springer, London (2004). doi: 10.1007/978-1-85233-863-3_4 CrossRefGoogle Scholar
  6. Cavallucci, D., Rousselot, F., Zanni, C.: Linking contradictions and laws of engineering system evolution within the triz framework. Creat. Innov. Manage. 18(2), 71–80 (2009). doi: 10.1111/j.1467-8691.2009.00515.x CrossRefGoogle Scholar
  7. Chakrabarti, A.: Supporting analogical transfer in biologically inspired design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 201–220. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_8 CrossRefGoogle Scholar
  8. Chandrasekaran, B., Josephson, J.R.: Function in device representation. Eng. Comput. 16, 162–177 (2000)CrossRefzbMATHGoogle Scholar
  9. Csikszentmihalyi, M.: FLOW: The Psychology of Optimal Experience. HarperCollins, New York (1990)Google Scholar
  10. Deldin, J.-M., Schuhknecht, M.: The AskNature database: enabling solutions in biomimetic design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 17–27. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_3 CrossRefGoogle Scholar
  11. Dellieu, L., Sarrazin, M., Simonis, P., Deparis, O., Vigneron, J.P.: A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera). J. Appl. Phys. 116(2), 24701 (2014). doi: 10.1063/1.4889849. American Institute of PhysicsCrossRefGoogle Scholar
  12. Durand, F., Helms, M., Tsenn, J., McTigue, E., McAdams, D.A., Linsey, J.S.: Teaching students to innovate: evaluating methods for bioinspired design and their impact on design self efficacy. In: 27th International Conference on Design Theory and Methodology, vol. 7 (2015). doi: 10.1115/DETC2015-47716
  13. Elsevier OA-STM-Corpus: An open access corpus of scientific, technical, and medical content, 11 January 2015. https://github.com/elsevierlabs/OA-STM-Corpus
  14. Fayemi, P. E., Maranzana, N., Aoussat, A., Bersano, G.: Bio-inspired design characterisation and its links with problem solving tools. In: Proceedings of DESIGN 2014, pp. 173–182 (2014)Google Scholar
  15. Fayemi, P.-E., Maranzana, N., Aoussat, A., Bersano, G.: Assessment of the biomimetic toolset—design spiral methodology analysis. In: Chakrabarti, A. (ed.) ICoRD’15 – Research into Design Across Boundaries Volume 2. Smart Innovation, Systems and Technologies, vol. 35. Springer, New Delhi (2015a). doi: 10.1007/978-81-322-2229-3_3 Google Scholar
  16. Fayemi, P.-E., Maranzana, N., Aoussat, A., Chekchak, T., Bersano, G.: Modeling biological systems to facilitate their selection during a bio-inspired design process. In: DS 80-2 Proceedings of the 20th International Conference on Engineering Design (ICED 2015), Milan, Italy, vol. 2, pp. 225–234 (2015b)Google Scholar
  17. Feng, X.Q., Gao, X., Wu, Z., Jiang, L., Zheng, Q.S.: Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23(9), 4892–4896 (2007). doi: 10.1021/la063039b CrossRefGoogle Scholar
  18. Fish, F.E., Beneski, J.T.: Evolution and bio-inspired design: natural limitations. In: Goel, A.K., McAdams, D.A., Stone, R.B. (eds.) Stone Biologically Inspired Design, Chap. 12, pp. 287–312. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_12 CrossRefGoogle Scholar
  19. Garland Jr., T.: Trade-offs. Curr. Biol. 24(2), R60–R61 (2014)CrossRefGoogle Scholar
  20. Gentner, D., Kurtz, K.J.: Relations, objects, and the composition of analogies. Cogn. Sci. 30(4), 609–642 (2006). doi: 10.1207/s15516709cog0000_60 CrossRefGoogle Scholar
  21. Helfman Cohen, Y., Reich, Y.: Biomimetic Design Method for Innovation and Sustainability. Springer, Cham (2016). doi: 10.1007/978-3-319-33997-9 Google Scholar
  22. Helms, M., Vattam, S.S., Goel, A.K.: Biologically inspired design: process and products. Des. Stud. 30(5), 606–622 (2009). doi: 10.1016/j.destud.2009.04.003 CrossRefGoogle Scholar
  23. Hirtz, J., Stone, R.B., Mcadams, D.A., Szykman, S., Wood, K.L.: A functional basis for engineering design: reconciling and evolving previous efforts. Res. Eng. Des. 13, 65–82 (2002)CrossRefGoogle Scholar
  24. Inkermann, D., Stechert, C., Löffler, S., Vietor, T.: A 24. IASTED Technology Conferences/705: ARP/706: RA/707: NANA/728: CompBIO, March 2016. http://doi.org/10.2316/P.2010.706-031
  25. Jacbos, S.R., Nichol, E.C., Helms, M.E.: ‘Where are we now and where are we going?’ The BioM innovation database. J. Mech. Des. 136(11), 111101 (2014)CrossRefGoogle Scholar
  26. Kaiser, M.K., Hashemi Farzaneh, H., Lindemann, U.: An approach to support searching for biomimetic solutions based on system characteristics and its environmental interactions. In: Proceedings of International Design Conference, DESIGN, vol. DS 70, pp. 969–978 (2012)Google Scholar
  27. Kaiser, M.K., Hashemi Farzaneh, H., Lindemann, U.: BioSCRABBLE - the role of different types of search terms when searching for biological inspiration in biological research articles. In: International DESIGN Conference, Dubrovnik, Croatia, pp. 241–250 (2014)Google Scholar
  28. Khoo, C.S.G., Chan, S., Niu, Y.: Extracting causal knowledge from a medical database using graphical patterns. In: Proceedings of 38th Annual Meeting ofthe Association for Computational Linguistics, pp. 336–343 (2000)Google Scholar
  29. Khoo, C.S.G., Kornfit, J., Oddy, R.N., Myaeng, S.H.: Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing. Literary Linguist. Comput. 13, 177–186 (1998)CrossRefGoogle Scholar
  30. Kruiper, R., Chen-Burger, J., Desmulliez, M.P.Y.: Computer-aided biomimetics. In: Lepora, Nathan F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 131–143. Springer, Cham (2016). doi: 10.1007/978-3-319-42417-0_13 CrossRefGoogle Scholar
  31. Lepora, N., Verschure, P., Prescott, T.: The state of the art in biomimetics. Bioinspir. Biomim. 8, 1–11 (2013). doi: 10.3905/jpm.1974.408489 Google Scholar
  32. Markman, A.B., Gentner, D.: Structure mapping in the comparison process. Am. J. Psychol. 113(4), 501–538 (2000). doi: 10.2307/1423470 CrossRefGoogle Scholar
  33. Massey, A., Wallace, W.: Understanding and facilitating group problem structuring and formulation: mental representations, interaction, and representation aids. Decis. Support Syst. 17(4), 253–274 (1996)CrossRefGoogle Scholar
  34. Meyers, A.: Surface allows self-cleaning, 10 December 2015. AskNature: https://asknature.org/strategy/surface-allows-self-cleaning/#.WMlpAm-LSUk
  35. Millot, S., Vandewalle, P., Parmentier, E.: Sound production in red-bellied piranhas (Pygocentrus nattereri, Kner): an acoustical, behavioural and morphofunctional study. JEB 214, 3613–3618 (2011). doi: 10.1242/jeb.061218 CrossRefGoogle Scholar
  36. Mizoguchi, R., Kitamura, Y., Borgo, S.: A unifying definition for artifact and biological functions. Appl. Ontol. 11(2), 129–154 (2016). doi: 10.3233/AO-160165 CrossRefGoogle Scholar
  37. Nagel, J.K.S., Stone, R.B., McAdams, D.A.: A thesaurus for bioinspired engineering design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, Chap. 4, pp. 63–94. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_4 CrossRefGoogle Scholar
  38. Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79(6), 667–677 (1997). doi: 10.1006/anbo.1997.0400 CrossRefGoogle Scholar
  39. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, London (2007)CrossRefGoogle Scholar
  40. Perlman, M.: Changing the mission of theories of teleology: DOs and DON’Ts for thinking about function. In: Functions in Biological and Artificial Worlds, pp. 17–36 (2009)Google Scholar
  41. Rugaber, S., Bhati, S., Goswami, V., Spiliopoulou, E., Azad, S., Koushik, S., Kulkarni, R., Kumble, M., Sarathy, S., Goel, A.K.: Knowledge extraction and annotation for cross-domain textual case-based reasoning in biologically inspired design. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds.) Case-Based Reasoning Research and Development (ICCBR). LNCS, vol. 9969. pp. 342–355. Springer, Cham (2016). doi: 10.1007/978-3-319-47096-2_23 CrossRefGoogle Scholar
  42. Salgueiredo, C.F.: Modeling biological inspiration for innovative design. In: 20th International Product Development Management Conference, Paris, France, June 2013Google Scholar
  43. Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. Artif. Intell. Eng. Des. Anal. Manuf. 24(4), 483–506 (2010). doi: 10.1017/S0890060410000351 CrossRefGoogle Scholar
  44. Schön, D.A.: The Reflective Practitioner, How Professionals Think in Action. Basic Books, Inc., New York (1983). ISBN: 0-465-06878-2Google Scholar
  45. Shu, L.H., Cheong, H.: A natural language approach to biomimetic design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 29–62. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_3 CrossRefGoogle Scholar
  46. Stricker, H.M.: Bionik in der Produktentwicklung unter der Berücksichtigung menschlichen Verhaltens. Ph.D. thesis Lehrstuhl Für Produktentwicklung, TU Munich (2006)Google Scholar
  47. Taylor, G.K., Holbrook, R.I., de Perera, T.B.: Fractional rate of change of swim-bladder volume is reliably related to absolute depth during vertical displacements in teleost fish. J. Roy. Soc. Interface 7, 1379–1382 (2010). doi: 10.1098/rsif.2009.0522. The Royal SocietyCrossRefGoogle Scholar
  48. Vandevenne, D., Verhaegen, P.-A., Dewulf, S. Duflou, J.R.: A scalable approach for the integration of large knowledge repositories in the biologically-inspired design process. In: International Conference on Engineering Design, ICED 2011 (2011)Google Scholar
  49. Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: Product and organism aspects for scalable systematic biologically-inspired design. Procedia Eng. 131, 784–791 (2015)CrossRefGoogle Scholar
  50. Vandevenne, D., Pieters, T., Duflou, J.R.: Enhancing novelty with knowledge-based support for biologically-inspired design. Des. Stud. (2016a). doi: 10.1016/j.destud.2016.05.003
  51. Vandevenne, D., Verhaegen, P.-A., Dewulf, S., Duflou, J.R.: SEABIRD: scalable search for systematic biologically inspired design. Artif. Intell. Eng. Des. Anal. Manuf. 30, 78–95 (2016b)CrossRefGoogle Scholar
  52. Vattam, S., Wiltgen, B., Helms, M., Goel, A.K., Yen, J.: DANE: fostering creativity in and through biologically inspired design. In: Taura, T., Nagai, Y. (eds.) Design Creativity 2010, vol. 8, pp. 115–122. Springer, London (2011). doi: 10.1007/978-0-85729-224-7_16 CrossRefGoogle Scholar
  53. Vattam, S.S., Goel, A.K.: Foraging for inspiration: understanding and supporting the online information seeking practices of biologically inspired designers. In: Proceeding of the ASME IDETC/CIE 2011, 28–31 August 2011Google Scholar
  54. Vattam, S.S., Goel, A.K.: An information foraging model of interactive analogical retrieval. In: Proceedings of 35th Annual Meeting of Cognitive Science Society (2013a)Google Scholar
  55. Vattam, S.S., Goel, A.K.: Biological solutions for engineering problems: a study in cross-domain textual case-based reasoning. In: Proceedings of 21st International Conference on Case Based Reasoning 2013, pp. 343–357 (2013b). doi: 10.1007/978-3-642-39056-2_25
  56. Verhaegen, P.A., D’Hondt, J., Vandevenne, D., Dewulf, S., Duflou, J.R.: Identifying candidates for design-by-analogy. Comput. Ind. 62, 446–459 (2011)CrossRefGoogle Scholar
  57. Vincent, J.F.V., Mann, D.L.: Systematic technology transfer from biology to engineering. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360(1791), 159–173 (2002). doi: 10.1098/rsta.2001.0923 CrossRefGoogle Scholar
  58. Vincent, J.F.V., Bogatyreva, O.A., Bogatyreva, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. Roy. Soc. Interface 3(9), 471–482 (2006)CrossRefGoogle Scholar
  59. Vincent, J.F.V.: An ontology of biomimetics. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 269–286. Springer, London (2014). doi: 10.1007/978-1-4471-5248-4_11 CrossRefGoogle Scholar
  60. Vincent, J.F.V.: The trade-off: a central concept for biomimetics. Bioinspired, Biomimetic and Nanobiomaterials, (2016). doi: 10.1680/jbibn.16.00005 Google Scholar
  61. Wanieck, K., Fayemi, P.-E., Maranzana, N., Zollfrank, C., Jacobs, S.: Biomimetics and its tools. Bioinspir. Biom. Nanobiomater. (2017). doi: 10.1680/jbibn.16.00010 Google Scholar
  62. Wendrich, R.E.: Multimodal interaction, collaboration, and synthesis in design and engineering processing. In: Proceedings of International Design Conference, DESIGN, vol. DS 70, pp. 579–588 (2012)Google Scholar
  63. Wendrich, R.E., Kruiper, R.: Keep it real: on tools, emotion, cognition and intentionality in design. In: Proceedings of International Design Conference, DESIGN, Dubrovnik, Croatia, 16–19 May 2016Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ruben Kruiper
    • 1
  • Julian F. V. Vincent
    • 1
  • Jessica Chen-Burger
    • 1
  • Marc P. Y. Desmulliez
    • 1
  1. 1.Heriot-Watt UniversityEdinburghScotland, UK

Personalised recommendations