Bio-inspired Robot Design Considering Load-Bearing and Kinematic Ontogeny of Chelonioidea Sea Turtles

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10384)


This work explores the physical implications of variation in fin shape and orientation that correspond to ontogenetic changes observed in sea turtles. Through the development of a bio-inspired robotic platform – CTurtle – we show that (1) these ontogenetic changes apparently occupy stable extrema for either load-bearing or high-velocity movement, and (2) mimicry of these variations in a robotic system confer greater load-bearing capacity and energy efficiency, at the expense of velocity (or vice-versa). A possible means of adapting to load conditions is also proposed. We endeavor to provide these results as part of a theoretical framework integrating biological inquiry and inspiration within an iterative design cycle based on laminate robotics.


Bio-inspired robots Turtles Locomotion Mobile robots Kinematics Rapid-prototyping Laminates Granular media Fabrication Design 


  1. 1.
    Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown Jr., H., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: RHex: a biologically inspired hexapod runner. Auton. Robots 11(3), 207–213 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Askari, H., Kamrin, K.: Intrusion rheology in grains and other flowable materials. Nat. Mater. 15(12), 1274–1279 (2016)CrossRefGoogle Scholar
  3. 3.
    Autumn, K., Dittmore, A., Santos, D., Spenko, M., Cutkosky, M.: Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 209(Pt. 18), 3569–3579 (2006)Google Scholar
  4. 4.
    Birkmeyer, P., Peterson, K., Fearing, R.S.: A dynamic 16g hexapedal robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2683–2689 (2009)Google Scholar
  5. 5.
    Cham, J.G., Bailey, S.A., Clark, J.E., Full, R.J., Cutkosky, M.R.: Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Rob. Res. 21(10–11), 869–882 (2002)CrossRefGoogle Scholar
  6. 6.
    Dodd Jr., C.K.: Synopsis of the biological data on the loggerhead sea turtle caretta caretta (linnaeus 1758) (1988)Google Scholar
  7. 7.
    Eckert, K.L., Luginbuhl, C.: Death of a giant. Mar. Turt. Newsl. 43, 2–3 (1988)Google Scholar
  8. 8.
    Hoover, A., Steltz, E., Fearing, R.: An autonomous 2.4g crawling hexapod robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 26–33. IEEE (2008)Google Scholar
  9. 9.
    Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014)CrossRefGoogle Scholar
  10. 10.
    Kingsley, D., Quinn, R., Ritzmann, R.: A cockroach inspired robot with artificial muscles. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1837–1842. IEEE (2006)Google Scholar
  11. 11.
    Li, C., Zhang, T., Goldman, D.I.: A terradynamics of legged locomotion on granular media. Science 339, 1408–1412 (2013)CrossRefGoogle Scholar
  12. 12.
    Luck, K., Campbell, J., Jansen, M., Aukes, D.M., Ben Amor, H.: From the lab to the desert: fast prototyping and learning of robot locomotion. In: Robotics: Science and Systems Conference (RSS 2017)Google Scholar
  13. 13.
    Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired. Insect-Scale Robot. Sci. 340(6132), 603–607 (2013)Google Scholar
  14. 14.
    Mazouchova, N., Gravish, N., Savu, A., Goldman, D.I.: Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles. Biol. Lett. 6, 398–401 (2010)CrossRefGoogle Scholar
  15. 15.
    Mazouchova, N., Umbanhowar, P.B., Goldman, D.I.: Flipper-driven terrestrial locomotion of a sea turtle-inspired robot. Bioinspiration Biomimetics 8(2), 026, 007 (2013)Google Scholar
  16. 16.
    Pritchard, P., Mortimer, J.: Taxonomy, external morphology, and species identification. Res. Manag. Tech. Conserv. Sea Turtles 4, 21 (1999)Google Scholar
  17. 17.
    Renous, S., Bels, V.: Comparison between aquatic and terrestrial locomotions of the leatherback sea turle (dermochelys coriacea). J. Zool. 230(3), 357–378 (1993)CrossRefGoogle Scholar
  18. 18.
    Smith, K.U., Daniel, R.S.: Observations of behavioral development in the loggerhead turtle (caretta caretta). Science 104, 154–156 (1946)CrossRefGoogle Scholar
  19. 19.
    Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkosky, M., Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkoskly, M.R., Cutkosky, M.: Smooth vertical surface climbing with directional adhesion. IEEE Trans. Rob. 24(1), 65–74 (2008)CrossRefGoogle Scholar
  20. 20.
    Umedachi, T., Vikas, V., Trimmer, B.A.: Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspiration Biomimetics 11(2), 025001 (2016)Google Scholar
  21. 21.
    Wyneken, J.: Sea turtle locomotion: mechanics, behavior, and energetics. In: Lutz, P.L. (ed.) The Biology of Sea Turtles, pp. 168–198. CRC Press (1997)Google Scholar
  22. 22.
    Zug, G.R., Parham, J.F.: Age and growth in leatherback turtles, dermochelys coriacea (testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conserv. Biol. 2, 244–249 (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Life SciencesTempeUSA
  2. 2.The School of Computing, Informatics, and Decision Systems EngineeringTempeUSA
  3. 3.The Polytechnic SchoolArizona State UniversityMesaUSA

Personalised recommendations