Skip to main content

Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

In this work, we built a kinematic simulation model for our worm robot, which does peristaltic locomotion. We studied the construction of our robot’s mesh-rhombus structure and the structural behavior in response to the actuator controls and simulated them in MATLAB. With some kinematic assumptions, we can model changes in body shape. Friction, gravity, internal forces are not directly modeled, however a single correction factor can be used to align the simulation and hardware progress. New control methods are found based on this model, which reduced the motion slip on the robot. In future work, this simulation can help us control and design future mesh-based robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horchler, A.D., Kandhari, A., Daltorio, K.A., Moses, K.C., Ryan, J.C., Stultz, K.A., Kanu, E.N., Andersen, K.B., Kershaw, J., Bachmann, R.J., Chiel, H.J., Quinn, R.D.: Peristaltic locomotion of a modular mesh-based worm robot: precision. Compliance Friction Soft Robot. 2(4), 135–145 (2015)

    Article  Google Scholar 

  2. Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: 2012 worms, waves and robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3537–3538 (2012)

    Google Scholar 

  3. Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18(5), 1485–1497 (2013)

    Article  Google Scholar 

  4. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: 2002 Development of a peristaltic endoscope. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 347–352 (2002)

    Google Scholar 

  5. Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)

    Google Scholar 

  6. Fang, H., Li, S., Wang, K.W., Xu, J.: On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization. Nonlinear Dynamics (2015)

    Google Scholar 

  7. Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspir. Biomim. 8(3), 035003 (2013)

    Article  Google Scholar 

  8. Omori, H., Nakamura, T., Iwanaga, T., Hayakawa, T.: Development of mobile robots based on peristaltic crawling of an earthworm. In: Abdellatif, H. (ed.) Robotics Current and Future Challenges, InTech (2010)

    Google Scholar 

  9. Connolly, F., Walsh, C.J., Bertoldi, K.: Automatic design of fiber-reinforced soft actuators for trajectory matching. PNAS 114, 51–56 (2017)

    Article  Google Scholar 

  10. Zarrouk, D., Sharf, I., Shoham, M.: Analysis of earthworm-like robotic locomotion on compliant surfaces. In: International Conference on Robotics and Automation (ICRA) (2010)

    Google Scholar 

  11. Horchler, A.D., et al.: Worm-like robotic locomotion with a compliant modular mesh. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 26–37. Springer, Cham (2015). doi:10.1007/978-3-319-22979-9_3

    Chapter  Google Scholar 

  12. Kandhari, A., Horchler, A.D., Zucker, G.S., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 97–106. Springer, Cham (2016). doi:10.1007/978-3-319-42417-0_10

    Chapter  Google Scholar 

  13. Ross, D., Lagogiannis, K., Webb, B.: A model of larval biomechanics reveals exploitable passive properties for efficient locomotion. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 1–12. Springer, Cham (2015). doi:10.1007/978-3-319-22979-9_1

    Chapter  Google Scholar 

  14. Mehringer, A.G., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: An integrated compliant fabric skin softens, lightens, and simplifies a mesh robot. Living Machines (accepted) (2017)

    Google Scholar 

  15. Kandhari, A., Huang, Y., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Longitudinal stiffness affects forward locomotion while circumferential stiffness affects turning in a soft bodied earthworm like robot (2017, in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A. (2017). Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics