Skip to main content

Automated Calibration of a Biomimetic Space-Dependent Model for Zebrafish and Robot Collective Behaviour in a Structured Environment

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Bio-hybrid systems made of robots and animals can be useful tools both for biology and robotics. To socially integrate robots into animal groups the robots should behave in a biomimetic manner with close loop interactions between robots and animals. Behavioural zebrafish experiments show that their individual behaviours depend on social interactions producing collective behaviour and depend on their position in the environment. Based on those observations we build a multilevel model to describe the zebrafish collective behaviours in a structured environment. Here, we present this new model segmented in spatial zones that each corresponds to different behavioural patterns. We automatically fit the model parameters for each zone to experimental data using a multi-objective evolutionary algorithm. We then evaluate how the resulting calibrated model compares to the experimental data. The model is used to drive the behaviour of a robot that has to integrate socially in a group of zebrafish. We show experimentally that a biomimetic multilevel and context-dependent model allows good social integration of fish and robots in a structured environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  2. Bonnet, F., Binder, S., de Oliveria, M., Halloy, J., Mondada, F.: A miniature mobile robot developed to be socially integrated with species of small fish. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 747–752. IEEE (2014)

    Google Scholar 

  3. Bonnet, F., Cazenille, L., Gribovskiy, A., Halloy, J., Mondada, F.: Multi-robots control and tracking framework for bio-hybrid systems with closed-loop interaction. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (Forthcoming)

    Google Scholar 

  4. Bonnet, F., Cazenille, L., Seguret, A., Gribovskiy, A., Collignon, B., Halloy, J., Mondada, F.: Design of a modular robotic system that mimics small fish locomotion and body movements for ethological studies. Int. J. Adv. Rob. Syst. 14(3), 1729881417706628 (2017)

    Google Scholar 

  5. Bonnet, F., Rétornaz, P., Halloy, J., Gribovskiy, A., Mondada, F.: Development of a mobile robot to study the collective behavior of zebrafish. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 437–442. IEEE (2012)

    Google Scholar 

  6. Botvinick, M.: Multilevel structure in behaviour and in the brain: a model of fuster’s hierarchy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1485), 1615–1626 (2007)

    Article  Google Scholar 

  7. Cazenille, L., Bredeche, N., Halloy, J.: Multi-objective optimization of multi-level models for controlling animal collective behavior with robots. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 379–390. Springer, Cham (2015). doi:10.1007/978-3-319-22979-9_38

    Chapter  Google Scholar 

  8. Cazenille, L., Bredeche, N., Halloy, J.: Automated optimisation of multi-level models of collective behaviour in a mixed society of animals and robots. arXiv preprint arXiv:1602.05830 (2016)

  9. Cazenille, L., Collignon, B., Bonnet, F., Gribovskiy, A., Mondada, F., Bredeche, N., Halloy, J.: How mimetic should a robotic fish be to socially integrate into zebrafish groups? Bioinspiration & Biomimetics (Forthcoming)

    Google Scholar 

  10. Collignon, B., Séguret, A., Halloy, J.: A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments. R. Soc. Open Sci. 3(1), 150473 (2016)

    Article  MathSciNet  Google Scholar 

  11. Collignon, B., Séguret, A., Chemtob, Y., Cazenille, L., Halloy, J.: Collective departures in zebrafish: profiling the initiators. arXiv preprint arXiv:1701.03611 (2017)

  12. Correll, N., Schwager, M., Rus, D.: Social control of herd animals by integration of artificially controlled congeners. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 437–446. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69134-1_43

    Chapter  Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Deza, M., Deza, E.: Dictionary of Distances. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said, I., Durier, V., Canonge, S., Amé, J.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  16. Knight, J.: Animal behaviour: when robots go wild. Nature 434(7036), 954–955 (2005)

    Article  Google Scholar 

  17. Li, W., Gauci, M., Gross, R.: Turing learning: a metric-free approach to inferring behavior and its application to swarms. arXiv preprint arXiv:1603.04904 (2016)

  18. Lopez, U., Gautrais, J., Couzin, I.D., Theraulaz, G.: From behavioural analyses to models of collective motion in fish schools. Interface Focus 2(6), 693–707 (2012)

    Article  Google Scholar 

  19. Mondada, F., Halloy, J., Martinoli, A., Correll, N., Gribovskiy, A., Sempo, G., Siegwart, R., Deneubourg, J.: A general methodology for the control of mixed natural-artificial societies, Chap. 15. In: Kernbach, S. (ed.) Handbook of Collective Robotics: Fundamentals and Challenges, pp. 547–585. Pan Stanford (2013)

    Google Scholar 

  20. Mouret, J., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  21. Patricelli, G.L.: Robotics in the study of animal behavior. In: Breed, M.D., Moore, J. (eds.) Encyclopedia of Animal Behavior, pp. 91–99. Greenwood Press Westport, CT (2010)

    Google Scholar 

  22. Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G.: idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11(7), 743–748 (2014)

    Article  Google Scholar 

  23. Schmickl, T., Bogdan, S., Correia, L., Kernbach, S., Mondada, F., Bodi, M., Gribovskiy, A., Hahshold, S., Miklic, D., Szopek, M., Thenius, R., Halloy, J.: ASSISI: mixing animals with robots in a hybrid society. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 441–443. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39802-5_60

    Chapter  Google Scholar 

  24. Séguret, A., Collignon, B., Cazenille, L., Chemtob, Y., Halloy, J.: Loose social organisation of abstrain zebrafish groups in a two-patch environment. arXiv preprint arXiv:1701.02572 (2017)

  25. Sumpter, D.J., Mann, R.P., Perna, A.: The modelling cycle for collective animal behaviour. Interface Focus 2(6), 764–773 (2012)

    Article  Google Scholar 

  26. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Rob. Auton. Syst. 31(1), 109–117 (2000)

    Article  Google Scholar 

  27. Zabala, F., Polidoro, P., Robie, A., Branson, K., Perona, P., Dickinson, M.: A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions. Curr. Biol. 22(14), 1344–1350 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by EU-ICT project ‘ASSISIbf’, no. 601074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Cazenille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cazenille, L. et al. (2017). Automated Calibration of a Biomimetic Space-Dependent Model for Zebrafish and Robot Collective Behaviour in a Structured Environment. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics