Advertisement

Organelle Genomes in Phaseolus Beans and Their Use in Evolutionary Studies

  • Maria I. Chacón SánchezEmail author
Chapter
  • 507 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Chloroplasts and mitochondria originated from separate endosymbiotic events that occurred about 1.5 billion years ago. In plants, the quadripartite nature of the chloroplast genome is a conserved feature with very little size variation among species. In contrast, size of mitochondrial genomes varies greatly in plants with high rate of rearrangements in angiosperms, although highly conserved in sequence. Sequencing of organelle genomes has increased in the last years as new technologies developed, and today, the Organelle Genome Resources of GenBank contains about 1717 and 275 records of complete chloroplast and mitochondrial genomes for plants, 73 and six of them for legumes, respectively. In plants, plastid genomes have been very useful for phylogenetic and population genetics studies. In Phaseolus beans, polymorphisms in the plastid genome have been used in several studies to unravel the evolutionary history of the common bean and Lima bean in the wild and to pinpoint domestication places. However, all these studies have explored very few genomic regions of the plastid genome. Therefore, new genome resources need to be developed for Phaseolus beans. The sequencing of the plastid genome of the common bean in the year 2007 was a good start, but since then no new organelle genome sequences have been reported in this genus. The goal of this review is to stimulate the development of more organelle genomes resources in the genus Phaseolus, which will allow a better understanding of the rates and patterns of evolution and the dynamics of expression patterns of these genomes. Third-generation sequencing technologies and additional tools offer an opportunity to do so, and in the near future, we should see more developments in this direction.

Keywords

Chloroplast genome Mitochondrial genome Common bean Lima bean Genotyping by sequencing Next-generation sequencing technologies Population genetics 

References

  1. Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS ONE 6:e16404CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andueza-Noh RH, Serrano-Serrano ML, Chacón Sánchez MI, Sánchez del Pino I, Camacho-Pérez L, Coello-Coello J, Mijangos Cortes J, Debouck DG, Martínez-Castillo J (2013) Multiple domestications of the Mesoamerican gene pool of lima bean (Phaseolus lunatus L.): evidence from chloroplast DNA sequences. Genet Resour Crop Evol 60:1069–1086CrossRefGoogle Scholar
  3. Angioi SA, Desiderio F, Rau D, Bitocchi E, Attene G, Papa R (2009) Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biol 11:598–612CrossRefPubMedGoogle Scholar
  4. Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584CrossRefPubMedGoogle Scholar
  5. Bedbrook JR, Kolodner R (1979) The structure of chloroplast DNA. Annu Rev Plant Physiol 30:593–620CrossRefGoogle Scholar
  6. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bendich AJ (2007) The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. BioEssays 29:474–483CrossRefPubMedGoogle Scholar
  8. Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids. Springer, pp 29–63Google Scholar
  9. Borsch T, Quandt D (2009) Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Plant Syst Evol 282:169–199CrossRefGoogle Scholar
  10. Bukhari YM, Koivu K, Tigerstedt PMA (1999) Phylogenetic analysis of Acacia (Mimosaceae) as revealed from chloroplast RFLP data. Theor Appl Genet 98:291–298CrossRefGoogle Scholar
  11. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716CrossRefPubMedGoogle Scholar
  12. Byrne M, Hankinson M (2012) Testing the variability of chloroplast sequences for plant phylogeography. Aust J Bot 60:569–574CrossRefGoogle Scholar
  13. Chacón SMI, Pickersgill B, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor App Genet 110:432–444CrossRefGoogle Scholar
  14. Chacón SMI, Pickersgill B, Debouck DG, Arias JS (2007) Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Syst Evol 266:175–195CrossRefGoogle Scholar
  15. Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T (2013) The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS ONE 8:e56502CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen X, Li Q, Li Y, Qian J, Han J (2015) Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform. Front Plant Sci 6:42PubMedPubMedCentralGoogle Scholar
  17. Coleman AW (1982) Sex is dangerous in a world of potential symbionts or the basis of selection for uniparental inheritance. J Theor Biol 97:367–369CrossRefGoogle Scholar
  18. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot, 1443–1458Google Scholar
  19. Corriveau JL, Coleman AW (1991) Monitoring by epifluorescence microscopy of organelle DNA fate during pollen development in five angiosperm species. Develop Biol 147:271–280CrossRefPubMedGoogle Scholar
  20. Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucl Acids Res 36:e122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Desiderio F, Bitocchi E, Bellucci E, Rau D, Rodriguez M, Attene G, Papa R, Nanni L (2012) Chloroplast microsatellite diversity in Phaseolus vulgaris. Front Plant Sci 3:312PubMedGoogle Scholar
  22. Dong W, Liu J, Yu J, Wang L, Zhou S (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7:e35071CrossRefPubMedPubMedCentralGoogle Scholar
  23. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50 kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol Phylogenet Evol 5:429–438CrossRefPubMedGoogle Scholar
  24. Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst Bot 20:272–294CrossRefGoogle Scholar
  25. Duitama J, Quintero JC, Cruz DF, Quintero C, Hubmann G, Foulquié-Moreno MR, Verstrepen KJ, Thevelein JM, Tohme J (2014) An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucl Acids Res 42:e44–e44CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257CrossRefPubMedGoogle Scholar
  27. Eberhard WG (1980) Evolutionary consequences of intracellular organelle competition. Quart Rev Biol 55:231–249CrossRefPubMedGoogle Scholar
  28. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom 14:670–670CrossRefGoogle Scholar
  29. Fofana B, Baudoin JP, Vekemans X, Debouck DG, Du Jardin P (1999) Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus lunatus L.) using chloroplast DNA. Theor Appl Genet 98:202–212CrossRefGoogle Scholar
  30. Fofana B, Du Jardin P, Baudoin JP (2001) Genetic diversity in the Lima bean (Phaseolus lunatus L.) as revealed by chloroplast DNA (cpDNA) variations. Genet Resour Crop Evol 48:437–445CrossRefGoogle Scholar
  31. Gao L, Su Y-J, Wang T (2010) Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J Syst Evol 48:77–93CrossRefGoogle Scholar
  32. Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol Biol Evol 11:769–777PubMedGoogle Scholar
  33. Godelle B, Reboud X (1995) Why are organelles uniparentally inherited? Proc Roy Soc B-Biol Sci 259:27–33CrossRefGoogle Scholar
  34. Goulding SE, Wolfe KH, Olmstead RG, Morden CW (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206CrossRefPubMedGoogle Scholar
  35. Guo X, Castillo-Ramirez S, Gonzalez V, Bustos P, Fernandez-Vazquez JL, Santamaria RI, Arellano J, Cevallos MA, Davila G (2007) Rapid evolutionary change of common bean (Phaseolus vulgaris L.) plastome, and the genomic diversification of legume chloroplasts. BMC Genom 8:228CrossRefGoogle Scholar
  36. Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohamadi H, Chu J, Raymond A, Pleasance S, Coope R, Wildung MR, Ritland CE, Bousquet J, Jones SJM, Bohlmann J, Birol I (2016) Organellar genomes of white spruce (Picea glauca): assembly and annotation. Genome Biol Evol 8:29–41CrossRefGoogle Scholar
  37. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of Chloroplasts and Mitochondria. Springer, pp 103–126Google Scholar
  39. Jansen RK, Wojciechowski MF, Sanniyasi E, Lee S-B, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J, Scott PT, Gresshoff PM (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS ONE 7:e51687CrossRefPubMedPubMedCentralGoogle Scholar
  41. Knoop V (2012) Seed plant mitochondrial genomes: complexity evolving. In: Bock R, Knoop V (eds) Genomics of Chloroplasts and Mitochondria. Springer, Netherlands, pp 175–200CrossRefGoogle Scholar
  42. Knoop V, Volkmar U, Hecht J, Grewe F (2011) Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed) Plant Mitochondria. Springer, New York, pp 3–29CrossRefGoogle Scholar
  43. Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291CrossRefGoogle Scholar
  44. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76:41–45CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kubo T, Mikami T (2007) Organization and variation of angiosperm mitochondrial genome. Physiol Plantarum 129:6–13CrossRefGoogle Scholar
  46. Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14CrossRefPubMedGoogle Scholar
  47. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497CrossRefPubMedGoogle Scholar
  48. Levings CS III, Brown GG (1989) Molecular biology of plant mitochondria. Cell 56:171–179CrossRefPubMedGoogle Scholar
  49. Li Q, Li Y, Song J, Xu H, Xu J, Zhu Y, Li X, Gao H, Dong L, Qian J, Sun C, Chen S (2014) High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol 204:1041–1049CrossRefPubMedGoogle Scholar
  50. Lilly JW, Havey MJ, Jackson SA, Jiang J (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu Y, Wang B, Li L, Qiu Y-L, Xue J (2012) Conservative and dynamic evolution of mitochondrial genomes in early land plants. In: Bock R, Knoop V (eds) Genomics of Chloroplasts and Mitochondria. Springer, Netherlands, pp 159–174CrossRefGoogle Scholar
  52. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res 41:W575–W581CrossRefPubMedPubMedCentralGoogle Scholar
  53. Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710CrossRefPubMedPubMedCentralGoogle Scholar
  54. Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317CrossRefPubMedGoogle Scholar
  55. McPherson H, van der Merwe M, Delaney SK, Edwards MA, Henry RJ, McIntosh E, Rymer PD, Milner ML, Siow J, Rossetto M (2013) Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol 13:8CrossRefPubMedPubMedCentralGoogle Scholar
  56. Moore MJ, Triplett EW, Broughton WJ, Soltis PS, Soltis DE (2007) Complete nucleotide sequence of the plastid genome of the common bean, Phaseolus vulgaris. EU196765.1Google Scholar
  57. Motta-Aldana JR, Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón SMI (2010) Multiple origins of lima bean landraces in the Americas: evidence from chloroplast and nuclear DNA polymorphisms. Crop Sci 50:1773–1787CrossRefGoogle Scholar
  58. Naito K, Kaga A, Tomooka N, Kawase M (2013) De novo assembly of the complete organelle genome sequences of azuki bean (Vigna angularis) using next-generation sequencers. Breeding Sci 63:176–182CrossRefGoogle Scholar
  59. Negruk V (2013) Mitochondrial genome sequence of the legume Vicia faba. Front Plant Sci 4:128CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ohyama K (1996) Chloroplast and mitochondrial genomes from a liverwort, Marchantia polymorpha–gene organization and molecular evolution. Biosci Biotechnol Biochem 60:16–24CrossRefPubMedGoogle Scholar
  61. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93CrossRefGoogle Scholar
  62. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354CrossRefPubMedGoogle Scholar
  63. Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–12CrossRefGoogle Scholar
  64. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97CrossRefPubMedGoogle Scholar
  65. Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Missouri Botan Garden 75:1180–1206CrossRefGoogle Scholar
  66. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275–286CrossRefGoogle Scholar
  67. Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sanitá Lima M, Woods LC, Cartwright MW, Smith DR (2016) The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol Ecol Resour. doi: 10.1111/1755-0998.12585 PubMedGoogle Scholar
  69. Serrano-Serrano ML, Hernández-Torres J, Castillo-Villamizar G, Debouck DG, Chacón Sánchez MI (2010) Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: evidences for an Andean origin and past migrations. Mol Phylogenet Evol 54:76–87CrossRefPubMedGoogle Scholar
  70. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedPubMedCentralGoogle Scholar
  71. Smith SE, Bingham ET, Fulton RW (1986) Transmission of chlorophyll deficiencies in Medicago sativa: evidence for biparental inheritance of plastids. J Hered 77:35–38CrossRefGoogle Scholar
  72. Strauss SH, Palmer JD, Howe GT, Doerksen AH (1988) Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proce Natl Acad Sci USA 85:3898–3902CrossRefGoogle Scholar
  73. Stull GW, Moore MJ, Mandala VS, Douglas NA, Kates H-R, Qi X, Brockington SF, Soltis PS, Soltis DE, Gitzendanner MA (2013) A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl Plant Sci 1:1200497CrossRefGoogle Scholar
  74. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  75. Vachon N, Freeland JR (2011) Phylogeographic inferences from chloroplast DNA: quantifying the effects of mutations in repetitive and non-repetitive sequences. Mol Ecol Resour 11:279–285CrossRefPubMedGoogle Scholar
  76. Vekemans X, Hardy O, Berken B, Fofana B, Baudoin J-P (1998) Use of PCR-RFLP on chloroplast DNA to investigate phylogenetic relationships in the genus Phaseolus. Biotechnol Agron Soc Environ 2:128–134Google Scholar
  77. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wu Z, Gui S, Quan Z, Pan L, Wang S, Ke W, Liang D, Ding Y (2014) A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol 14:289CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang Q (2010) Why does biparental plastid inheritance revive in angiosperms? J Plant Res 123:201–206CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de AgronomíaUniversidad Nacional de Colombia—Bogotá—Facultad de Ciencias AgrariasCódigoColombia

Personalised recommendations