Advertisement

Genetic Mapping and QTL Analysis in Common Bean

  • Ana M. González
  • Fernando J. Yuste-Lisbona
  • Antonia Fernández-Lozano
  • Rafael Lozano
  • Marta SantallaEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and a well-studied crop species in terms of genetics, genomics and breeding. Genome maps are important tools that are an integral part of genetic resource conservation and breeding programmes. Several maps have been developed or are being developed in common bean. Different types of molecular markers such as RFLP, AFLP, SSR, CAPS, RGA and EST have been developed and mapped onto the 11 common bean chromosomes. Markers have been used extensively for identification and mapping of genes and QTL for many biologically and agriculturally important traits, including disease resistance genes, photoperiod sensitivity, growth habit, pod size, seed weight, pigmentation, phenology and abiotic stress tolerance, and occasionally for germplasm screening, fingerprinting and marker-assisted breeding. MAS has been employed mainly for improving simply inherited traits and not much for improving complex traits. The utility of MAS in common bean breeding has been restricted largely due to inaccurate estimation of main QTL, epistatic and QTL × environmental interaction effects. GWAS has also proved to be a powerful tool for investigating complex traits and developing new markers for breeding. The huge amount of sequence information available for common bean via whole-genome sequencing projects facilitates in the next years the development of a rapid and cost-effective generation of high-density functional maps, which could also lead to the direct gene tagging for QTL mapping of important agronomic traits, improving the efficiency of common bean breeding programmes via MAS.

Keywords

Phaseolus vulgaris Quantitative trait locus Epistasis Diseases Abiotic stress Agronomic traits Genome-wide association 

Notes

Acknowledgements

This work was financially supported by the Ministerio de Economía y Competitividad (AGL2014-51809-R project), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RF2012-C00026-C02-01 and RF2012-00026-C02-02 projects), Junta de Andalucía (Grant P12-AGR-01482 funded by Programa de Excelencia) and UE-FEDER Program. The authors would also like to thank Campus de Excelencia Internacional Agroalimentario-CeiA3 and Contrato Programa Xunta de Galicia-BAS for partially supporting this work.

References

  1. Adam-Blondon A, Sévignac M, Dron M, Bannerot H (1994) A genetic map of common bean to localize specific resistance genes against anthracnose. Genome 37:915–924PubMedCrossRefGoogle Scholar
  2. Adams M (1967) Basis of yield component compensation in crop plants with special reference to the field bean, Phaseolus vulgaris. Crop Sci 7:505–510CrossRefGoogle Scholar
  3. Andersen J, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  4. Ariyarathne H, Coyne D, Jung G, Skroch PV, Vidaver AK, Steadman JR, Miklas PN, Bassett MJ (1999) Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Am Soc Hort Sci 124:654–662Google Scholar
  5. Asfaw A, Blair M (2012) Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol Breed 30:681–695CrossRefGoogle Scholar
  6. Asfaw A, Blair M, Struik P (2012) Multi environment quantitative Trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. G3(2):579–595Google Scholar
  7. Asins MJ (2002) Present and future of QTL analysis in plant breeding. Plant Breed 121:281–291CrossRefGoogle Scholar
  8. Bassett M (1988) Linkage mapping of marker genes in common bean. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, The Netherlands, pp 329–353CrossRefGoogle Scholar
  9. Bassett M (1991) A revised linkage map of common bean. HortSci 26:834–836Google Scholar
  10. Bassett M (1996) List of genes—Phaseolus vulgaris L. Annu Rep Bean Improv Coop 39:1–19Google Scholar
  11. Bassett M (2004) List of genes: Phaseolus vulgaris L. Annu Rep Bean Improv Coop 47:1–24Google Scholar
  12. Bassett M (2005) A new gene (Prpi-2) for intensified anthocyanin expression (IAE) syndrome in common bean and a reconciliation of gene symbols used by early investigators of gene symbols for purple pod and IAE syndrome. J Am Soc Hortic Sci 130:550–554Google Scholar
  13. Bassett M, Myers J (1999) Report of BIC genetic committee. Annu Rep Bean Improv Coop 42 viGoogle Scholar
  14. Bassett M, Lee R, Otto C, McClean PE (2002) Classical and molecular genetic studies of the strong greenish yellow seed coat color in ‘Wagenaar’ and ‘Enola’ common bean. J Am Soc Hort Sci 127:50–55Google Scholar
  15. Beattie A, Larsen J, Michaels T, Pauls K (2003) Mapping quantitative trait loci for a common bean (Phaseolus vulgaris L.) ideotype. Genome 46:411–422PubMedCrossRefGoogle Scholar
  16. Beebe S, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muñoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423CrossRefGoogle Scholar
  17. Beebe S, Rao I, Terán H, Cajiao C (2007) Breeding concepts and approaches in food legumes: The example of common bean. pp. 23–29. In: Food and forage legumes of Ethiopia: Progress and prospects. Proceedings of the workshop on food and forage legumes. Addis Ababa, EthiopiaGoogle Scholar
  18. Beninger C, Hosfield G, Bassett M (1999) Flavonoid composition of three genotypes of dry bean (Phaseolus vulgaris L.) differing in seed coat color. J Am Soc Hortic Sci 124:514–518Google Scholar
  19. Beninger C, Hosfield G, Bassett M, Owens S (2000) Chemical and morphological expression of the B and Asp seedcoat genes in Phaseolus vulgaris L. J Am Soc Hortic Sci 125:52–58Google Scholar
  20. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  21. Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031PubMedCrossRefGoogle Scholar
  22. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  23. Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163PubMedCrossRefGoogle Scholar
  24. Blair MW, Rodríguez L, Pedraza F, Morales F, Beebe S (2007) Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 114:261–271PubMedCrossRefGoogle Scholar
  25. Blair MW, Astudillo G, Grusak M, Graham R, Beebe SE (2009a) Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207CrossRefGoogle Scholar
  26. Blair MW, Sandoval TA, Caldas GV, Beebe SE, Páez MI (2009b) Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci 49:237–246CrossRefGoogle Scholar
  27. Blair MW, Medina J, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Mesoamerican common beans (Phaseolus vulgaris L.). Theor Appl Genet 121:1059–1071PubMedCrossRefGoogle Scholar
  28. Blair MW, Astudillo C, Rengifo J, Beebe SE, Graham R (2011) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–523PubMedCrossRefGoogle Scholar
  29. Blair MW, Galeano C, Tovar E, Muñoz Torres MC, Castrillón AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant. Mol Breed 29:71–88PubMedCrossRefGoogle Scholar
  30. Blair MW, Cortés AJ, This D (2016) Identification of an ERECTA gene and its drought adaptation associations with wild and cultivated common bean. Plant Sci 242:250–259PubMedCrossRefGoogle Scholar
  31. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.) model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  32. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  33. Caldas GV, Blair MW (2009) Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:131–142PubMedCrossRefGoogle Scholar
  34. Campa A, Pérez-Vega E, Giraldez R, Ferreira JJ (2007) Inheritance of race-specific resistance to anthracnose in the differential cultivar AB136. Annu Rep Bean Improv Coop 50:87–88Google Scholar
  35. Campa A, Giraldez R, Ferreira J (2009) Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theor Appl Genet 119:1–11PubMedCrossRefGoogle Scholar
  36. Campa A, Pañeda A, Pérez-Vega E, Giraldez R, Ferreira JJ (2011) Mapping and use of seed protein loci for marker-assisted selection of growth habit and photoperiod response in ‘nuña’ bean (Phaseolus vulgaris L.). Euphytica 179:383–391CrossRefGoogle Scholar
  37. Campa A, Rodríguez-Suárez C, Giraldez R, Ferreira J (2014) Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biol 14:115PubMedPubMedCentralCrossRefGoogle Scholar
  38. Campos T, Oblessuc PR, Sforca DA, Cardoso JMK, Baroni RM, Sousa ACB, Carbonell SAM, Chioratto AF, Garcia AAF, Rubiano LB, Souza AP (2011) Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.). Mol Breed 27:549–560CrossRefGoogle Scholar
  39. Casañas F, Pérez-Vega E, Almirall A et al (2013) Mapping of QTL associated with seed chemical content in a RIL population of common bean (Phaseolus vulgaris L.). Euphytica 192:279–288CrossRefGoogle Scholar
  40. Chavarro M, Blair M (2010) QTL Analysis and effect of the fin locus on tropical adaptation in an inter-genepool common bean population. Tropical Plant Biol 3:204–218CrossRefGoogle Scholar
  41. Checa O, Blair M (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215CrossRefGoogle Scholar
  42. Checa O, Blair W (2012) Inheritance of yield-related traits in climbing beans (Phaseolus vulgaris L.). Crop Sci 52:1998–2013CrossRefGoogle Scholar
  43. Chowdhury MA, Yu K, Park SJ (2002) Molecular mapping of root rot resistance in common beans. Annu. Rep. Bean Improv. Coop. 45:96–97Google Scholar
  44. Cichy KA, Blair MW, Galeno C, Snapp SS, Kelly JD (2009a) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68CrossRefGoogle Scholar
  45. Cichy KA, Caldas G, Sieglinde S, Matthew W (2009b) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750CrossRefGoogle Scholar
  46. Cichy KA, Fernandez A, Kilian A, Kelly JD, Galeano CH, Shaw S, Brick M, Hodkinson D, Troxtell E (2014) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Mol Breed 33:139–154CrossRefGoogle Scholar
  47. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  48. Córdoba JM, Chavarro C, Rojas F, Muñoz C, Blair MW (2010a) Identification and mapping of simple sequence repeat markers from common bean (Phaseolus vulgaris L.) bacterial artificial chromosome end sequences for genome characterization and genetic-physical map integration. Plant Genome 3:154–165CrossRefGoogle Scholar
  49. Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010b) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genom 11:436CrossRefGoogle Scholar
  50. Coyne DP, Shuster ML, Hill K (1973) Genetic control of reaction to common blight bacterium in bean (Phaseolus vulgaris) as influenced by plant age and bacterial multiplication. J Am Soc Hortic Sci 98:94–99Google Scholar
  51. Currence T (1931) A new pod colour in snap beans. J Hered 22:21–23CrossRefGoogle Scholar
  52. Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2015) Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:1181–1188CrossRefGoogle Scholar
  53. Davis J, Kean D, Yorgey B, Fourie D, Miklas PN, Myers JR (2006) A molecular marker linkage map of snap bean (Phaseolus vulgaris). Annu Rep Bean Improv Coop 49:73–74Google Scholar
  54. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004PubMedCrossRefGoogle Scholar
  55. Dickson M, Petzoldt R (1986) p gene in beans (Phaseolus vulgaris L.): a gene for horizontal mediocrity. In: 22nd In Hort Congress, Davis, CA. HortSci 21 (Abstract 339), 338Google Scholar
  56. Drijfhout E (1978) Genetic interaction between Phaseolus vulgaris L. and bean common mosaic virus with implications for strain identification and breeding for resistance. Centre for Agriculture Publishing and Documentation, (pp. 1–98). Wageningen, The NetherlandsGoogle Scholar
  57. Ender M, Kelly JD (2005) Identification of QTL associated with white mold resistance in common bean. Crop Sci 45:2482–2490CrossRefGoogle Scholar
  58. Erdmann P, Lee R, Basset M, McClean PE (2002) A molecular marker tightly linked to P, a gene required for flower and seed coat color in common bean (Phaseolus vulgaris L.), contains the ty3-gypsy retrotransposon tpv3g. Genome 45:728–736PubMedCrossRefGoogle Scholar
  59. Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot 105:1119–1128PubMedPubMedCentralCrossRefGoogle Scholar
  60. Faleiro F, Ragagnin V, Moreira M, Barros E (2004) Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Euphytica 183:213–218CrossRefGoogle Scholar
  61. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587PubMedPubMedCentralGoogle Scholar
  62. Ferreira J, Campa A, Kelly J (2013) Organization of genes conferring resistance to anthracnose in common bean. In: Ferreira J, Campa A, Kelly J, Varshney R, Tuberosa R (eds) Translational genomics for crop breeding. Wiley, New York (pp 151–181)Google Scholar
  63. Fourie D, Miklas PN, Ariyaranthe H (2004) Genes conditioning halo blight resistance to races 1, 7 and 9 occur in a tight cluster. Annu Rep Bean Improv Coop 47:103–104Google Scholar
  64. Frei A, Blair MW, Cardona C, Beebe SE, Gu H, Dorn S (2005) QTL mapping of resistance to Thrips palmi Karny in common bean. Crop Sci 45:379–387CrossRefGoogle Scholar
  65. Freyre R, Skroch P, Geffroy V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Pereira PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97:847–856CrossRefGoogle Scholar
  66. Galeano CH, Fernández AC, Franco-Herrera N, Cichy KA, McClean PA, Vanderleyden J, Blair MW (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS ONE 6:12CrossRefGoogle Scholar
  67. Galeano CH, Cortés A, Fernández A, Soler A, Franco-Herrera N, Makunde G, Vanderleyden J, Blair MW (2012) Gene-based single nucleotide polymorphism markers for genetic and association mapping in common bean. BMC Genet 13:48PubMedPubMedCentralCrossRefGoogle Scholar
  68. Garzon LN, Blair MW (2014) Development and mapping of SSR markers linked to resistance-gene homologue clusters in common bean. The Crop J 2(4):183–194CrossRefGoogle Scholar
  69. Geffroy V, Sévignac M, De Oliveira JC, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of Quantitative Trait Loci with genes involved in specific resistance. Mol Plant-Microbe Interact 13:287–296PubMedCrossRefGoogle Scholar
  70. Geffroy V, Sévignac M, Billant P, Dron M, Langin T (2008) Resistance to Colletotrichum lindemuthianum in Phaseolus vulgaris: a case study for mapping two independent genes. Theor Appl Genet 116:407–415PubMedCrossRefGoogle Scholar
  71. Gelin JP, Forster S, Grafton KF et al (2007) Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366CrossRefGoogle Scholar
  72. Gepts P (1988) Provisional linkage map of common bean. Annu Rep Bean Improv Coop 31:20–25Google Scholar
  73. Gepts P (1999) Development of an integrated linkage map. In: Singh S (ed) Developments in plant breeding common bean improvement in the twenty-first century. Kluwer,Dordrecht, The Netherlands, pp 53–91Google Scholar
  74. Gepts P, Nodari R, Tsai SM, Koinange EMK, LLaca V, Gilbertson R, Guzman P (1993) Linkage mapping in common bean. Annu Rep Bean Improv Coop 36:24–38Google Scholar
  75. Gioia T, Logozzo G, Kami J, Zeuli PS, Gepts P (2012) Identification and characterization of a homologue to the Arabidopsis INDEHISCENT gene in common bean. J Heredity 104:273–286CrossRefGoogle Scholar
  76. Gonçalves-Vidigal MC, Vidigal Filho PS, Medeiros AF, Pastor-Corrales MA (2009) Common bean landrace Jalo Listras Pretas is the source of a new Andean anthracnose resistance gene. Crop Sci 49:133–138CrossRefGoogle Scholar
  77. Gonçalves-Vidigal MC, Cruz A, Garcia A, Kami J, Vidigal Filho PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage mapping of the Phg-1 and Co-1 4 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903PubMedCrossRefGoogle Scholar
  78. Gonçalves-Vidigal MC, Cruz A, Lacanallo G, Vidigal Filho PS, Sousa LL, Pacheco CM, McClean P, Gepts P, Pastor-Corrales MA (2013) Co-segregation analysis and mapping of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. Theor Appl Genet 126:2245–2255PubMedCrossRefGoogle Scholar
  79. González A, Yuste-Lisbona F, Rodiño A, De Ron AM, Capel C, García-Alcázar M, Lozano R, Santalla M (2015) Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean. Front Plant Sci 6:141PubMedPubMedCentralCrossRefGoogle Scholar
  80. González A, Yuste-Lisbona F, Godoy L, Fernández-Lozano A, Rodiño A, De Ron AM, Lozano R, Santalla M (2016) Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.) Mol Breed 36:166Google Scholar
  81. González A, Yuste-Lisbona F, Rodiño A, Saburido S, Bretones S, De Ron AM, Lozano R, Santalla M (2016b) Major contribution of flowering time and vegetative growth to plant production in common bean as deduced from a comparative genetic mapping. Front Plant Sci 7:1940PubMedPubMedCentralGoogle Scholar
  82. Goretti D, Bitocchi E, Bellucci E, Rodriguez M, Rau D, Gioia T, Attene G, McClean P, Nanni L, Papa R (2014) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed 33:531–544CrossRefGoogle Scholar
  83. Graham M, Ramírez M, Valdés-López O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species. Funct Plant Biol 33:789–797CrossRefGoogle Scholar
  84. Gu W, Zhu J, Wallace D, Singh SP, Weeden NF (1998) Analysis of genes controlling photoperiod sensitivity in common bean using DNA markers. Euphytica 102:125–132CrossRefGoogle Scholar
  85. Gujaria-Verma N, Ramsay L, Sharpe AG, Sanderson LA, Debouck DG, Tar’an B, Bett KE (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17:239Google Scholar
  86. Guzmán-Maldonado S, Martínez O, Acosta-Gallegos J, Guevara-Lara F, Paredes-López O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035CrossRefGoogle Scholar
  87. Hagerty C (2013) Mapping QTL for root rot resistance, root traits, and morphological trait in a common bean recombinant inbred population. Master of Science in Horticulture. Oregon State University. http://ir.library.oregonstate.edu/xmlui/handle/1957/38263
  88. Hagerty CH, Cuesta-Marcos A, Cregan PB, Song Q, McClean P, Noffsinger S et al (2015) Mapping and root rot resistance and root architecture quantitative trait loci in common bean. Crop Sci 55:1969–1977Google Scholar
  89. Hanai LR, Santini L, Camargo LE, Fungaro MH, Gepts P, Tsai SM, Vieira ML (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45PubMedCrossRefGoogle Scholar
  90. Hernández G, Ramírez M, Valdés-López O et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767PubMedPubMedCentralCrossRefGoogle Scholar
  91. Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–82Google Scholar
  92. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161PubMedCrossRefGoogle Scholar
  93. Hougaard BK, Madsen LH, Sandal N, Moretzsohn MC, Fredslund J, Schauser L, Nielsen AM, Rohde T, Sato S, Tabata S, Bertioli DJ, Stougaard J (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula, and Arachis. Genetics 179:2299–2312PubMedPubMedCentralCrossRefGoogle Scholar
  94. Huang BE, Verbyla K, Verbyla A, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128(6):999–1017PubMedCrossRefGoogle Scholar
  95. Hungria M, Vargas M (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164CrossRefGoogle Scholar
  96. Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS, Choi IY, Hwang EY, Pastor-Corrales M, Cregan PB (2010) High throughput SNP discovery and assay development in common bean. BMC Genom 11:475CrossRefGoogle Scholar
  97. Johannsen W (1911) The genotype conception of heredity. Am Nat 45:129–159CrossRefGoogle Scholar
  98. Johnson W, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79CrossRefGoogle Scholar
  99. Johnson W, Menéndez C, Nodari R, Koinange EMK, Magnusson S, Singh SP, Gepts P (1996) Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp.: Sax (1923) revisited. J Agric Genomics 2Google Scholar
  100. Johnson W, Guzmán P, Mandala D, Mkandawire ABC, Temple S, Gilbertson RL, Gepts P (1997) Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37:248–254CrossRefGoogle Scholar
  101. Jung G, Coyne D, Scroch P, Nienhuis J, Bokosi J, Ariyarathne HM, Steadman JR, Beaver JS, Kaeppler SM (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Am Soc Hort Sci 121:794–803Google Scholar
  102. Jung G, Skroch P, Coyne D, Nienhuis J, Arnaud-Santana E, Ariyarathne HM, Kaeppler SM, Bassett MJ (1997) Molecular-markers-based genetic analysis of tepary bean derived common bacterial blight resistance in different developmental stage of common bean. J Am Soc Hort Sci 122:329–337Google Scholar
  103. Jung G, Coyne D, Bokosi J, Steadman JR, Nienhuis J (1998) Mapping genes for specific and adult plant resistance to rust and abaxial leaf pubescence and their genetic relationship using random amplified polymorphic DNA (RAPD) markers in common bean. J Am Soc Hortic Sci 123:859–863Google Scholar
  104. Jung G, Ariyarathne H, Coyne DP, Nienhuis J (2003) Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43:350–357CrossRefGoogle Scholar
  105. Kalavacharla V, Stavely JR, Myers JR, McClean PE (2000) Crg, a gene required for Ur-3-mediated rust resistance in common bean, maps to a resistance gene analog cluster. Mol Plant-Microbe Interact 13:1237–1242CrossRefGoogle Scholar
  106. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334CrossRefGoogle Scholar
  107. Kamfwa K, Mwala M, Okori P, Gibson P, Mukankusi C (2013) Identification of QTL for Fusarium Root Rot resistance in common bean. J Crop Improv 27:406–418CrossRefGoogle Scholar
  108. Kamfwa K, Cichy K, Kelly J (2015a) Genome-Wide association study of agronomic traits in common bean. The Plant Genome 8:2CrossRefGoogle Scholar
  109. Kamfwa K, Cichy KA, Kelly JD (2015b) Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theor Appl Genet 128:1999–2017PubMedCrossRefGoogle Scholar
  110. Keller B, Manzanares C, Jara C, Lobaton JD, Studer B, Raatz B (2015) Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128:813–826PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kelly J, Vallejo V (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortSci 39:1196–1207Google Scholar
  112. Kelly J, Gepts P, Miklas P, Coyne D (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154CrossRefGoogle Scholar
  113. Koenig R, Singh S, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 44:50–60CrossRefGoogle Scholar
  114. Koinange E, Singh S, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045CrossRefGoogle Scholar
  115. Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548CrossRefGoogle Scholar
  116. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291PubMedCrossRefGoogle Scholar
  118. Kyle M, Dickson M (1988) Linkage of hypersensitivity to five viruses with the B locus in Phaseolus vulgaris L. J Hered 79:308–311Google Scholar
  119. Lamprecht H (1961) Weitere Kopplungsstudien an Phaseolus vulgaris mit einer Ubersicht ber die Koppelungsgruppen. Agr Hort Genet 19:319–332Google Scholar
  120. Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA 92:4656–4660PubMedPubMedCentralCrossRefGoogle Scholar
  121. Lauer J, Bijl C, Grusak M, Baenziger PS, Boote K, Lingle S, Carter T, Kaeppler S, Boerma R, Eizenga G, Carter P, Goodman M, Nafziger E, Kidwell K, Mitchell R, Edgerton MD, Quesenberry K, Willcox MC (2012) The scientific grand challenges of the 21st century for the Crop Science Society of America. Crop Sci 52:1003–1010CrossRefGoogle Scholar
  122. Leakey C (1988) Genotypic and phenotypic markers in common bean. In: Gepts P (ed) Genetic resources of Phaseolus Beans. Kluwer, Dordrecht, Netherlands, pp 245–347Google Scholar
  123. Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970CrossRefGoogle Scholar
  124. López CE, Acosta IF, Jara C, Pedraza F, Gaitán-Solís E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistance to different pathogens in common bean. Phytopathology 93:88–95PubMedCrossRefGoogle Scholar
  125. López-Marín H, Rao I, Blair M (2009) Quantitative trait loci for root morphology traits under aluminum stress in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:449–458PubMedCrossRefGoogle Scholar
  126. Mahuku G, Iglesias AM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396CrossRefGoogle Scholar
  127. Mahuku G, Henriquez MA, Montoya C, Jara C, Teran H, Beebe S (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71CrossRefGoogle Scholar
  128. Maxwell JJ, Brick MA, Byrne PF, Schwartz H, Shan X, Ogg JB, Henson R (2007) Quantitative trait loci linked to white mold resistance in common bean. Crop Sci 47:2285–2294CrossRefGoogle Scholar
  129. McClean PE, Lee R, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152PubMedCrossRefGoogle Scholar
  130. McClean PE, Mamidi S, McConnell M, Chikara S, Lee R (2010) Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genom 11:184CrossRefGoogle Scholar
  131. McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P (2010) Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 121:1103–1116PubMedCrossRefGoogle Scholar
  132. Melotto M, Monteiro-Vitorello CB, Bruschi AG, Camargo LE (2005) Comparative bioinformatic analysis of genes expressed in common bean (Phaseolus vulgaris L.) seedlings. Genome 48:562–570PubMedCrossRefGoogle Scholar
  133. Mendel G (1866) Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn. Bd. IV für das Jahr 1865, Abhandlungen, 3–47Google Scholar
  134. Meziadi C, Richard MM, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V (2015) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357PubMedCrossRefGoogle Scholar
  135. Mienie CMS, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111:972–979PubMedCrossRefGoogle Scholar
  136. Miguel M (2004) Genotypic variation in root hairs and phosphorus efficiency in common bean (Phaseolus vulgaris L.). P. Pennsylvania State University: University Park (ed) HorticultureGoogle Scholar
  137. Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996) Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351CrossRefGoogle Scholar
  138. Miklas PN, Stone V, Urrea CA, Johnson E, Beaver JS (1998) Inheritance and QTL analysis of field resistance to ashy stem blight. Crop Sci 38:916–921CrossRefGoogle Scholar
  139. Miklas PN, Delorme R, Stone V, Stavely J, Steadman J, Bassett Beaver J (2000) Bacterial, fungal, virus disease loci mapped in a recombinant inbred common bean population (‘Dorado/XAN176’). J Am Soc Hort Sci 125:476–481Google Scholar
  140. Miklas PN, Johnson W, Delorme R, Gepts P (2001) QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41:309–315CrossRefGoogle Scholar
  141. Miklas PN, Pastor-Corrales M, Jung G, Coyne D, Kelly J, Mcclean P, Gepts P (2002) Comprehensive linkage map of bean rust resistance genes. Annu Rep Bean Improv Coop 45:125–129Google Scholar
  142. Miklas PN, Coyne D, Grafton K, Mutlu N, Reiser J, Lindgren D, Singh SP (2003) A major QTL for common bacterial blight resistance derives from the from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131:137–146CrossRefGoogle Scholar
  143. Miklas PN, Kelly J, Beebe S, Blair M (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131CrossRefGoogle Scholar
  144. Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CMS (2009) Tagging and mapping Pse-1 gene for resistance to halo blight in common bean host differential cultivar UI-3. Crop Sci 49:41–48CrossRefGoogle Scholar
  145. Miklas PN, Fourie D, Trapp J, Larsen RC, Chavarro C, Blair MW, Gepts P (2011) Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean. Crop Sci 51:2439–2448CrossRefGoogle Scholar
  146. Miklas PN, Porter LD, Kelly JD, Myers JM (2013) Characterization of white mold disease avoidance in common bean. Eur J Plant Pathol 135:525–543CrossRefGoogle Scholar
  147. Miklas PN, Fourie D, Trapp J, Davis J, Myers JR (2014) New loci including conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci 54:2099–2108CrossRefGoogle Scholar
  148. Mir RR, Zaman-Allah M, Sreenivasulu N et al (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645PubMedPubMedCentralCrossRefGoogle Scholar
  149. Mkwaila W, Terpstra KA, Ender M, Kelly JD (2011) Identification of QTL for resistance to white mold in wild and landrace germplasm of common bean. Plant Breeding 130:665–672CrossRefGoogle Scholar
  150. Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J, Schmutz J, McClean PE (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a middle american diversity panel of common bean. Plant Genome 9(3):1–21CrossRefGoogle Scholar
  151. Molina A, Beaver J (1998) Inheritance of normal pod development in bean golden mosaic resistant common beans. Annu Rep Bean Improv Coop 41:3–4Google Scholar
  152. Motto M, Soressi GP, Salamini F (1978) Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.). Genetica 49:31–36CrossRefGoogle Scholar
  153. Mukeshimana G, Butare G, Cregan P, Blair MW, Kelly JD (2014) Identification of Quantitative Trait Loci associated with drought tolerance in common bean using SNP markers. Crop Sci 54:923–938CrossRefGoogle Scholar
  154. Müller BS, Sakamoto T, de Menezes IP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP (2014) Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. Plant Mol Biol 86:455–470PubMedCrossRefGoogle Scholar
  155. Mutlu N, Miklas P, Reiser J, Coyne D (2005a) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L). Plant Breed 124:282–287CrossRefGoogle Scholar
  156. Mutlu N, Miklas PN, Steadman JR, Vidaver A, Lindgren D, Reiser J, Pastor Corrales M (2005b) Registration of pinto bean germplasm line ABCP-8 with resistance to common bacterial blight. Crop Sci 45:806–807CrossRefGoogle Scholar
  157. Myers J, Bassett M (1993) Inheritance, allelism, and morphological characterization of unifoliate mutations in common bean. J Hered 84:17–20CrossRefGoogle Scholar
  158. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckle ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedPubMedCentralCrossRefGoogle Scholar
  159. Nanni L, Bitocchi E, Bellucci E, Rossi M, Rau D, Attene G, Gepts P, Papa R (2011) Nucleotide diversity of a genomic sequence similar to SHATTERPROOF (PvSHP1) in domesticated and wild common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:1341–1357PubMedCrossRefGoogle Scholar
  160. Nemli S, Asciogul T, Kaya H, Kahraman A, Eşiyok D, Tanyolac B (2014) Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). J Sci Food Agric 94:3141–3151PubMedCrossRefGoogle Scholar
  161. Nodari RO (1992). Towards an integrated linkage map of common bean (Phaseolus vulgaris L.). Ph.D. diss. University of California, DavisGoogle Scholar
  162. Nodari RO, Tsai S, Gilbertson R, Gepts P (1993a) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 84:186–192Google Scholar
  163. Nodari RO, Tsai S, Guzmán P, Gilbertson RL, Gepts P (1993b) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350PubMedPubMedCentralGoogle Scholar
  164. Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM, Camargo LEA, Benchimol LL (2012) Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 13:e50CrossRefGoogle Scholar
  165. Oblessuc PR, Cardoso Perseguini JMK, Baroni RM, Chiorato AF, Carbonell SA, Mondego JM, Vidal RO, Camargo LE, Benchimol-Reis LL (2013) Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. Theor Appl Genet 126:2451–2465PubMedCrossRefGoogle Scholar
  166. Oblessuc PR, Baroni RM, Pereira GS, Chioratto AF, Carbonell SAM, Briñez B, Da Costa ESL, Garcia AAF, Camargo LEA, Kelly JD, Benchimol-Reis LL (2014) Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed 34:1313–1329CrossRefGoogle Scholar
  167. Ochoa I, Blair M, Lynch J (2006) QTL Analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621CrossRefGoogle Scholar
  168. Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (2007) Association mapping in plants. Springer, New York, NYCrossRefGoogle Scholar
  169. Osborn T, Blake T, Gepts P, Bliss F (1986) Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71:847–855PubMedCrossRefGoogle Scholar
  170. Park SJ, Tu JC (1986) Association between BCMV resistant I gene and eye color of cv. Steuben. Annu Rep Bean Improv Coop 29:4–5Google Scholar
  171. Park SO, Coyne DP, Jung G, Skroch PW, Arnaud-Santana E, Steadman JR, Ariyarathne HM, Nienhuis J (2000) Mapping of QTL for seed size and shape traits in common bean. J Am Soc Hortic Sci 125:466–475Google Scholar
  172. Park SO, Coyne DP, Steadman JR, Skroch PW (2001) Mapping of QTL for resistance to white mold diseases in common bean. Crop Sci 41:1253–1262CrossRefGoogle Scholar
  173. Parvez AS, Rather AG, Warsi MZK (2007) Implications of epistasis in maize breeding. Int J Plant Breed Genet 1:1–11Google Scholar
  174. Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380PubMedCrossRefGoogle Scholar
  175. Pérez-Vega E, Pascual A, Campa A, Giraldez R, Miklas PN, Ferreira JJ (2012) Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL population Xana × Cornell 49242. Mol Breed 29:31–41CrossRefGoogle Scholar
  176. Perseguini JMKC, Silva GMB, Rosa JRBF, Gazaffi R, Marçal JF, Carbonell SA, Chiorato AF, Zucchi MI, Garcia AA, Benchimol-Reis LL (2015) Developing a common bean core collection suitable for association mapping studies. Genet Mol Biol. 38(1):67–78PubMedCrossRefGoogle Scholar
  177. Perseguini JMKC, Oblessuc PR, Rosa JRBF, Gomes KA, Chiorato AF, Carbonell SA, Garcia AA, Vianello RP, Benchimol-Reis LL (2016) Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.). PLoS ONE 11(3):e0150506PubMedPubMedCentralCrossRefGoogle Scholar
  178. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867PubMedPubMedCentralCrossRefGoogle Scholar
  179. Posa-Macalincag M, Hosfield G, Grafton K (2002) Quantitative trait loci (QTL) analysis of canning quality traits in kidney bean (Phaseolus vulgaris L.). J Amer Soc Hort Sci 127:608–615Google Scholar
  180. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedCrossRefGoogle Scholar
  181. Qi Y (2015) Characterization of a putative yield-related gene in common bean (Phaseolus vulgaris L.). Master of Science in Plant Agriculture. Guelph, Ontario, Canada: The University of Guelph, http://hdl.handle.net/10214/8727
  182. Ramaekers L, Galeano C, Garzón N, Vanderleyden J, Blair MW (2013) Identifying quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Mol Breed 31:163–180CrossRefGoogle Scholar
  183. Ramírez M, Graham M, Blanco-López L, Silvente S, Medrano-Soto A, Blair MW, Hernández G, Vance CP, Lara M (2005) Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 137:1211–1227PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ramírez M, Flores-Pacheco G, Reyes J, Alvarez AL, Drevon JJ, Girard L, Hernández G (2013) Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int J Mol Sci 14:8328–8344PubMedPubMedCentralCrossRefGoogle Scholar
  185. Rangel AF, Mobin M, Rao IM, Horst WJ (2005) Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607–616CrossRefGoogle Scholar
  186. Rangel AF, Rao IM, Braun H-P, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant 138:176–190PubMedCrossRefGoogle Scholar
  187. Rao I (2001) Role of physiology in improving crop adaptation to abiotic stresses in the tropics: the case of common bean and tropical forages. In: Pessarakl M (ed) Handbook of plant and crop physiology. NY, USA: Marcel Dekker (pp 583–613)Google Scholar
  188. Repinski S, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547PubMedCrossRefGoogle Scholar
  189. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRefGoogle Scholar
  190. Román-Avilés B, Kelly JD (2005) Identification of quantitative trait loci conditioning resistance to Fusarium root rot in common bean. Crop Sci 45:1881–1890CrossRefGoogle Scholar
  191. Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedPubMedCentralGoogle Scholar
  192. Schmutz J, McClean P, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713PubMedCrossRefGoogle Scholar
  193. Schneider KA, Brothers M, Kelly J (1997) Marker assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60CrossRefGoogle Scholar
  194. Schneider KA, Grafton KF, Kelly JD (2001) QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41:535–542CrossRefGoogle Scholar
  195. Shaw JK, Norton JB (1918) The inheritance of seed-coat color in garden beans. Massachusetts Agr Exp Sta Bul 185:59–104Google Scholar
  196. Shi C, Navabi A, Yu K (2011) Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52PubMedPubMedCentralCrossRefGoogle Scholar
  197. Singh SP, Westermann DT (2002) A single dominant gene controlling resistance to soil zinc deficiency in common bean. Crop Sci 42:1071–1074CrossRefGoogle Scholar
  198. Song Q, Jia G, Hyten DL, Jenkins J, Hwang EY, Schroeder SG, Osorno JM, Schmutz J, Jackson SA, McClean PE, Cregan PB (2015) SNP assay development for linkage map construction, anchoring whole-genome sequence, and other genetic and genomic applications in common bean G3(5):2285–2290Google Scholar
  199. Soule M, Porter L, Medina J, Santana GP, Blair MW, Miklas PN (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and 19365–31. Crop Sci 51:123–139CrossRefGoogle Scholar
  200. Sousa LL, Gonçalves AO, Gonçalves-Vidigal MC, Lacanallo GF, Fernandez AC, Awale HE, Kelly JD (2015) Genetic characterization and mapping of anthracnose resistance of common bean landrace cultivar Corinthiano. Crop Sci 55:1900–1910CrossRefGoogle Scholar
  201. Souza A, Boscariol R, Moon D, Camargo LEA, Tsai SM (2000) Effects of Phaseolus vulgaris QTL in controlling host-bacteria interactions under two levels of nitrogen fertilization. Gen Mol Biol 23:155–161CrossRefGoogle Scholar
  202. Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, de Barros EG (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro, the main rust resistance source used in Brazil. Plant Pathol 60:839–845CrossRefGoogle Scholar
  203. Stavely JR (1984) Genetics of resistance to Uromyces phaseoli in a Phaseolus vulgaris line resistant to most races of the pathogen. Phytopathology 74:339–344CrossRefGoogle Scholar
  204. Stavely JR (1998) Recombination of two major dominant rust resistance genes that are tightly linked in repulsion. Annu Rep Bean Improv Coop 41:17–18Google Scholar
  205. Strausbaugh C, Myers J, Forster R, McClean P (1999) bc-1 and bc-u—two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hort Sci 124:644–648Google Scholar
  206. Tar’an B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44: 1046–1056Google Scholar
  207. Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556Google Scholar
  208. Temple S, Morales F (1986) Linkage of dominant hypersensitive resistance to bean common mosaic virus to seed color in Phaseolus vulgaris L. Euphytica 35:331–333CrossRefGoogle Scholar
  209. Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genomics 11:3–11PubMedCrossRefGoogle Scholar
  210. Tian J, Venkatachalam P, Liao H, Yan X, Raghothama K (2007) Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227:151–165PubMedCrossRefGoogle Scholar
  211. Tjebbes K, Kooiman H (1921) Erfelijkheidsonderzoekingen bij boonen. IV. Over den strepingsfactor, een geval van volkomen afstooting tusschen de twee factoren. Genetica 3:28–49CrossRefGoogle Scholar
  212. Trabanco N, Asensio-Manzanera M, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588CrossRefGoogle Scholar
  213. Trabanco N, Campa A, Ferreira J (2015) Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. The Plant Genome 8(2):1–11CrossRefGoogle Scholar
  214. Trapp JJ, Urrea CA, Cregan PB, Miklas PN (2015) Detection of major QTL for yield under multiple abiotic and terminal drought stress in a recombinant inbred dry bean population. In: Genetics of drought tolerance in common bean (Phaseolus vulgaris L.). Doctoral Thesis. Department of Crop and Soil Sciences. Washington State UniversityGoogle Scholar
  215. Tsai S, Nodari R, Moon D, Camargo LEA, Vencovsky R, Gepts P (1998) QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204:135–145CrossRefGoogle Scholar
  216. Vadez V, Jens D, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, Gaur PM, Munier-Jolain N, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44CrossRefGoogle Scholar
  217. Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance CP, Luis Reyes J, Hernández G (2008) Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant, Cell Environ 31:1834–1843CrossRefGoogle Scholar
  218. Valladares-Sánchez NE, Coyne DP, Schuster ML (1979) Differential reaction of leaves and pods of Phaseolus germplasm to strain of Xanthomonas phaseoli and transgressive segregation for tolerance from crosses of susceptible germplasm. J Am Soc Hort Sci 104:648–654Google Scholar
  219. Vallejos CE (1994) Phaseolus vulgaris—The common bean. In: Phillips R, Vasil I (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 261–270CrossRefGoogle Scholar
  220. Vallejos CE, Chase CD (1991) Linkage between isozyme markers and a locus affecting seed size in Phaseolus vulgaris L. Theor Appl Genet 81:413–419PubMedCrossRefGoogle Scholar
  221. Vallejos CE, Sakiyama NS, Chase CD (1992) A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740PubMedPubMedCentralGoogle Scholar
  222. Vallejos CE, Skroch P, Nienhuis J (2001) Phaseolus vulgaris—The common bean integration of RFLP and RAPD- based linkage maps. In: Phillips R, Vasil I (eds) DNA—Based markers in plants. Kluwer, Dordrecht, pp 301–317CrossRefGoogle Scholar
  223. Vandemark G, Fourie D, Miklas P (2008) Genotyping with real-time PCR reveals recessive epistasis between independent QTL conferring resistance to CBB in dry bean. Theor Appl Genet 117:513–522PubMedCrossRefGoogle Scholar
  224. Vasconcelos RA, Nascimento P, Zaczuk P et al (2012) QTL mapping for the cooking time of common beans. Euphytica 186(3):779–792CrossRefGoogle Scholar
  225. Velez J, Bassett M, Beaver J, Molina A (1998) Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Hort Sci 123:628–631Google Scholar
  226. Viteri D, Cregan P, Trapp J, Miklas P, Shre S (2015) A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Sci 54:1598–1608CrossRefGoogle Scholar
  227. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, Câmara F, Prieto-Barja P, Corvelo A, Sanseverino W7, Westergaard G, Dohm JC, Pappas GJ Jr, Saburido-Alvarez S, Kedra D, Gonzalez I, Cozzuto L, Gómez-Garrido J, Aguilar-Morón MA, Andreu N, Aguilar OM, Garcia-Mas J, Zehnsdorf M, Vázquez MP, Delgado-Salinas A, Delaye L, Lowy E, Mentaberry A, Vianello-Brondani RP, García JL, Alioto T, Sánchez F, Himmelbauer H, Santalla M, Notredame C, Gabaldón T, Herrera-Estrella A, Guigó R (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32Google Scholar
  228. Weeden NF, Liang CY (1985) Detection of a linkage between white flower color and EST-2 in common bean. Annu Rep Bean Improv Coop 28:87–88Google Scholar
  229. Weller J, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207PubMedPubMedCentralCrossRefGoogle Scholar
  230. White J, Kornegay J, Cajiao C (1996) Inheritance of temperature sensitivity of the photoperiod response in common bean (Phaseolus vulgaris L.). Euphytica 9:5–8CrossRefGoogle Scholar
  231. Wortmann C, Kirkby R, Eledu C, Allen D (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. Cali, Colombia: (CIAT), Centro Internacional de Agricultura TropicalGoogle Scholar
  232. Wright E, Kelly J (2011) Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179:471–484CrossRefGoogle Scholar
  233. Wu J, Wang L, Li L, Wang S (2014) De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS ONE 9:e109262PubMedPubMedCentralCrossRefGoogle Scholar
  234. Yaish M, Sosa D, Vences F, Vaquero F (2006) Genetic mapping of quantitative resistance to race 5 of Pseudomonas syringae pv. phaseolicola in common bean. Euphytica 179:417–425Google Scholar
  235. Yamashita Y, Takeuchi T, Okuyama M et al (2014) Development and validation of DNA markers linked to Sdvy-1, a common bean gene conferring resistance to the yellowing strain of Soybean dwarf virus. Breed Sci 64:404–408PubMedPubMedCentralCrossRefGoogle Scholar
  236. Yan X, Liao H, Beebe S, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29CrossRefGoogle Scholar
  237. Yang Z, Eticha D, Rotter B, Rao IM, Horst WJ (2011) Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol 192:99–113PubMedCrossRefGoogle Scholar
  238. Yu Z, Stall R, Vallejos C (1998) Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38:1290–1296CrossRefGoogle Scholar
  239. Yu K, Park S, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedCrossRefGoogle Scholar
  240. Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  241. Yuste-Lisbona F, Santalla M, Capel C, García-Alcázar M, De la Fuente M, Capel J, De Ron AM, Lozano R (2012) Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC Plant Biol 12:136Google Scholar
  242. Yuste-Lisbona F, González A, Capel C, García-Alcázar M, Capel J, De Ron AM, Lozano R, Santalla M (2014a) Genetic analysis of single–locus and epistatic QTLs for seed traits in an Adapted × Nuña RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 127:897–912PubMedCrossRefGoogle Scholar
  243. Yuste-Lisbona F, González A, Capel C, García-Alcázar M, Capel J, De Ron AM, Santalla M, Lozano R (2014b) Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects. Mol Breed 33:939–952CrossRefGoogle Scholar
  244. Zhu C, Gore M, Buckler ES, Jiangming YU (2008) Status and prospects of association mapping in plants. The Plant Genome 1:5–20CrossRefGoogle Scholar
  245. Zou X, Shi C, Austin RS, Merico D, Munholland S, Marsolais F, Navabi A, Crosby WL, Pauls KP, Yu K, Cui Y (2014) Genome-wide single nucleotide polymorphism and Insertion-Deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breed 33:769–778CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ana M. González
    • 1
  • Fernando J. Yuste-Lisbona
    • 2
  • Antonia Fernández-Lozano
    • 2
  • Rafael Lozano
    • 2
  • Marta Santalla
    • 1
    Email author
  1. 1.Grupo de Biología de AgrosistemasMisión Biológica de Galicia-CSICPontevedraSpain
  2. 2.Centro de Investigación En Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain

Personalised recommendations