Advertisement

Applications of Carrageenan: With Special Reference to Iota and Kappa Forms as Derived from the Eucheumatoid Seaweeds

  • Rafael R. Loureiro
  • M. L. Cornish
  • Iain C. Neish
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 9)

Abstract

Carrageenan is a natural, long-chain carbohydrate (polysaccharide), obtained from a variety of red algae including the Eucheumatoid seaweeds, viz. Kappaphycus and Eucheuma. Carrageenan shows a tremendous diversity in its molecular structure, a feature that directly influences its commercial applications and extraction methods. Known applications of carrageenan include its use as a gelling, thickening and binding agent in the processed foods industry. A notable feature of its usage is that it is commonly blended in ingredient solutions with other gums where it exhibits synergistic or complementary characteristics. Carrageenan has also been used in experimental medicine, pharmaceutical formulations, cosmetics and several industrial applications.

Keywords

Carrageenan Polysaccharide Eucheumatoid seaweeds Kappaphycus Eucheuma 

References

  1. Aleixandre A, Miguel M (2008) Dietary fiber in the prevention and treatment of metabolic syndrome: a review. Crit Rev Food Sci Nutr 48:905–912CrossRefPubMedGoogle Scholar
  2. Allen DE, Hatfield G (2004) Medicinal plants in folk tradition – an ethnobotany of Britain & Ireland. Timber Press, Portland/CambridgeGoogle Scholar
  3. Bixler HJ (1996) Recent developments in manufacturing and marketing carrageenan. Hydrobiol 326(327):35–57CrossRefGoogle Scholar
  4. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  5. Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papilloma virus infection. PLoS Pathog 2(7):671–680CrossRefGoogle Scholar
  6. Burton-Freeman B (2000) Dietary fiber and energy regulation. J Nutr 130:272S–275SPubMedGoogle Scholar
  7. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  8. Carlucci MJ, Pujol CA, Ciancia M, Noseda MD, Matulewicz MC, Damonte EB, Cerezo AS (1997) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20:97–105CrossRefPubMedGoogle Scholar
  9. Carlucci MJ, Scolaro LA, Noseda MD, Cerezo AS, Damonte EB (2004) Protective effect of a natural carrageenan on genital herpes simplex virus infection in mice. Antivir Res 64:137–141CrossRefPubMedGoogle Scholar
  10. Collén J, Cornish ML, Craigie J, Ficko-Blean E, Hervé C, Krueger-Hadfield SA, Leblanc C, Michel G, Potin P, Tonon T, Boyen C (2014) Chondrus crispus – a present and historical model organism for red seaweeds. In: Bourgougnon N (ed) Advances in botanical research, Sea plants, vol 71. Academic, Amsterdam, pp 53–89Google Scholar
  11. Cornish ML, Critchley AT, Mouritsen OG (2015) A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia 54:649–666CrossRefGoogle Scholar
  12. Cornish ML, Critchley AT, Mouritsen OG (2017) Consumption of seaweeds and the human brain. J Appl Phycol . doi: 10.1007/s10811-016-1049-3 Google Scholar
  13. FAO (2014). FAO JECFA monographs, specifications: Carrageenan. http://wwwfaoorg/. Accessed 7 Jan 2017
  14. Ghannam A, Abbas A, Alek H, Al-Waari Z, Al-Ktaifani M (2013) Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol Mol Plant Physiol 84:19–27CrossRefGoogle Scholar
  15. Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fiber and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294CrossRefGoogle Scholar
  16. González A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448CrossRefGoogle Scholar
  17. Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H (2008) Iota-carrageenan is a potent inhibitor of rhinovirus infection. Virol J 5:1–13CrossRefGoogle Scholar
  18. Gurpilhares DB, Moreira TR, Bueno JL, Cinelli LP, Mazzola PG, Pessoa A, Sette LD (2016) Algae’s sulfated polysaccharides modifications: potential use of microbial enzymes. Process Biochem 51:989–998CrossRefGoogle Scholar
  19. Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org; searched on 10 March 2017
  20. Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Bushmann AH, Yarish C, Edwards MD, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837CrossRefPubMedGoogle Scholar
  21. Hotchkiss S, Brooks M, Campbell R, Philip K, Trius A (2016) The use of carrageenan in food. In: Pereira L (ed) Carrageenans, sources and extraction methods, molecular structure, bioactive properties and health effects. Nova Science Publishers, New York, pp 142–150Google Scholar
  22. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jutur PP, Nesamma AA, Shaikh KM (2016) Algae-derived marine oligosaccharides and their biological applications. Front Mar Sci 3:83CrossRefGoogle Scholar
  24. Kindness G, Long WF, Williamson FB (1980a) A anticoagulant effects of sulphated polysaccharides in normal and antithrombin III-deficient plasmas. Br J Pharmacol 69:675–677CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kindness G, Williamson FB, Long WF (1980b) Involvement of antithrombin III in anticoagulant effects of sulphated polysaccharides. Biochem Soc Trans 8:82–83Google Scholar
  26. Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B (2014) Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci 93:1–11CrossRefGoogle Scholar
  27. Lai VMF, Wong PA-L, Lii C-Y (2000) Effects of cation properties on sol-gel transition and gel properties of κ-carrageenan. J Food Sci 65:1332–1337CrossRefGoogle Scholar
  28. Liang L, Rui N, Yang S, Mao S (2014) Carrageenan and its application is drug delivery. Carbohydr Polym 103:1–11CrossRefGoogle Scholar
  29. Ludwig M, Enzenhofer E, Schneider S, Rauch M, Bodenteich A, Neumann K, Prieschl-Grassauer E, Grassauer A, Lion T, Mueller CA (2013) Efficacy of a carrageenan nasal spray in patients with common cold: a randomized controlled trial. Respir Res 14:124–127CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mahungu SM, Hansen SL, Artz WE (2002) Fat substitutes. In: Brown AL, Davidson PM, Salminen S, Thorngate JH III (eds) Food additives. Marcel Dekker, New York, p 311Google Scholar
  31. Menon VV (2012) Seaweed polysaccharides – food applications. In: Se-Kwon K (ed) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley, New York, pp 541–555Google Scholar
  32. Mitchell ME, Guiry MD (1983) Carrageenan: a local habitation of a name? J Ethnopharmacol 9:347–351CrossRefPubMedGoogle Scholar
  33. Mouritsen OG (2013) Seaweeds edible, available & sustainable. University of Chicago Press, LondonCrossRefGoogle Scholar
  34. Nagalakshmi V, Pai JS (1997) Immobilization of penicillin acylase producing E. coli cells with carrageenan. Indian J Microbiol 37:17–20Google Scholar
  35. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58(4):187–205Google Scholar
  36. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. Biotech 2:171–185Google Scholar
  37. Porse H, Rudolph B (2017) The seaweed hydrocolloids industry: 2016 updates, requirements and outlook. J Appl Phycol. doi:10:1007/s10811-017-1144-0
  38. Prajapati VD, Maheriya PM, Jani JK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112CrossRefPubMedGoogle Scholar
  39. Ricohermoso MA, Deveau LE (1979) Review of commercial propagation of Eucheuma (Florideophyceae) clones in the Philippines. Proc Int Seaweed Symp 9:525–531Google Scholar
  40. Rocha de Souza MC, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160CrossRefPubMedGoogle Scholar
  41. Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47(6):587–597CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sangha JS, Kandasamy S, Khan W, Bahia NS, Singh RP, Critchley AT, Prithiviraj B (2015) λ-carrageenan suppresses tomato chlorotic dwarf viroid (TCDVd) replication and symptom expression in tomatoes. Mar Drugs 13:2875–2889CrossRefPubMedPubMedCentralGoogle Scholar
  43. Soares F, Fernandes C, Silva P, Pereira L, Gonçalves T (2016) Antifungal activity of carrageenan extracts from the red alga Chondracanthus teedei var. lusitanicus. J Appl Phycol 28:2991–2998CrossRefGoogle Scholar
  44. Stanley N (2011) FAO Corporate document repository. Chapter 3: Production, properties and uses of carrageenan. FMC Corporation, Marine Colloids Division 5 Maple Street, Rockland Maine 04841, USAGoogle Scholar
  45. Stiles J, Guptill-Yoran L, Moore GE, Pogranichniy RM (2008) Effects of carrageenan on in vitro replication of feline herpesvirus and on experimentally induced herpetic conjunctivitis in cats. Investig Ophthalmol Vis Sci 49:1496–1501CrossRefGoogle Scholar
  46. Thorbjarnarson T (1939) Nyting fjφrugrasa (utilization of Irish moss). Ӕgir 9:193Google Scholar
  47. Turner D (1809) Fuci, sive plantarum fucorum generi a botanicis ascriptarum icons, descriptions et historia. John and Arthur Arch, LondonGoogle Scholar
  48. Van de Velde F, Lourenco ND, Pinheiro HM, Bakkerd M (2002) Carrageenan: a food-grade and biocompatible support for immobilization techniques. Adv Synth Catal 344:815–835CrossRefGoogle Scholar
  49. van de Velde F, Rollema HS, Grinberg NV, Burova TV, Grinberg VY, Tromp RH (2002) Coil-helix transition of i-carrageenan as afunction of chain regularity. Biopol 65(4):299–312Google Scholar
  50. Warrand J (2006) Healthy polysaccharides-the next chapter in food products. Food Technol Biotechnol 44:355–370Google Scholar
  51. WHO Factsheet No. 311 (2015) Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 18 Dec 2016
  52. Yamashita S, Sugita KY, Shimizu M (2001) In vitro bacteriostatic effects of dietary polysaccharides. Food Sci Technol Res 7:262–264CrossRefGoogle Scholar
  53. Yuan H, Zhang W, Lu X, Li H, Geo X, Song J (2005) Preparation and in vitro antioxidant activity of k-carrageenan oligosaccharides and their over-sulfated, acetylated, and phosphorylated derivatives. Carbohydr Res 340:685–692Google Scholar
  54. Yuan H, Song J, Li X, Li N, Dai J (2006) Immunomodulation and antitumoractivity of carrageenan oligosaccharides. Cancer Lett 243:228–234CrossRefPubMedGoogle Scholar
  55. Yermak IM, Sokolova EV, Davydova VN, Solov’eva TF, Aminin DL, Reunov AV, Lapshina LA (2016) Influence of red algal polysaccharides on biological activities and supramolecular structure of bacterial lipopolysaccharide. J Appl Phycol 28:619–627Google Scholar
  56. Zacharopoulos VR, Phillips DM (1997) Vaginal formulations of carrageenan protect mice from Herpes simplex virus infection. Clin Diagn Lab Immunol 4:465–468PubMedPubMedCentralGoogle Scholar
  57. Zhou G, Sheng W, Yao W, Wang C (2006) Effect of low molecular carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 53:129–134CrossRefPubMedGoogle Scholar
  58. Zaporozhets TS, Besednova NN, Kuznetsova TA, Zvyagintseva TN, Makarenkova ID, Kryzhanovsky SP, Melnikov VG (2014) The prebiotic potential of polysaccharides and extracts of seaweeds. Russ J Mar Biol 40:1–9Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rafael R. Loureiro
    • 1
  • M. L. Cornish
    • 2
  • Iain C. Neish
    • 3
  1. 1.Blue Marble Space Institute of ScienceSeattleUSA
  2. 2.Acadian Seaplants LimitedCornwallisCanada
  3. 3.PT Sea Six Energy IndonesiaBaliIndonesia

Personalised recommendations