Skip to main content

A D-MMAP to Model a Complex Multi-state System with Loss of Units

  • Chapter
  • First Online:
Recent Advances in Multi-state Systems Reliability

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

A complex multi-state system subject to different types of failures and preventive maintenance, with loss of units, is modelled by considering a discrete marked Markovian arrival process. The system is composed of K units, one online and the rest in cold standby. The online unit is submitted to different types of failures and when a non-repairable failure occurs the corresponding unit is removed. Several internal degradation states are considered which are observed when a random inspection occurs. This unit is subject to internal repairable failure, external shocks and preventive maintenance. If one internal repairable failure occurs, the unit goes to the repair facility for corrective repair, if a major degradation level is observed by inspection, the unit goes to preventive maintenance and when one external shock happens, this one may produce an aggravation of the internal degradation level, cumulative external damage or external extreme failure (non-repairable failure). Preventive maintenance and corrective repair times follow different distributions. The system is modelled in transient regime and relevant performance measures are obtained. All results are expressed in algorithmic and computational form and they have been implemented computationally with MATLAB and R. A numerical example shows the versatility of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breuer L (2002) An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann Oper Res 112:123–138

    Article  MathSciNet  MATH  Google Scholar 

  2. Chakravarthy SR (2001) The batch Markovian arrival process: a review and future work. In: Krishnamoorthy A, Raju N, Ramaswami V (eds) Advances in probability and stochastic processes. Notable Publications, pp 21–49

    Google Scholar 

  3. Dui H, Si S, Zuo M, Sun S (2015) Semi-Markov process-based integrated importance measure for multi-state systems. IEEE Trans Reliab 64(2):754–765

    Article  Google Scholar 

  4. Eryilmaz S (2010) Mean residual and mean past lifetime of multi-state systems with identical components. IEEE Trans Reliab 59(4):644–649

    Article  Google Scholar 

  5. He QM (2014) Fundamental of matrix analytic methods. Springer, New York

    Book  Google Scholar 

  6. Huang L, Xu Q (2010) Lifetime reliability for load-sharing redundant systems with arbitrary failure distributions. IEEE Trans Reliab 59(2):319–330

    Article  Google Scholar 

  7. Latouche G, Remiche MA, Taylor P (2003) Transient Markovian arrival processes. Ann Appl Probab 13:628–640

    Article  MathSciNet  MATH  Google Scholar 

  8. Lisnianski A, Frenkel I, Ding Y (2010) Multi-state system reliability analysis and optimization for engineers and industrial managers. Springer, London

    Book  MATH  Google Scholar 

  9. Liu B, Xie M, Kuo W (2015) Reliability modeling and preventive maintenance of load-sharing systems with degrading components. IIE Trans 48(8):699–709

    Article  Google Scholar 

  10. Mi J, Li YF, Liu Y, Yang Y, Huang H (2015) Belief universal generating function analysis of multi-state systems under epistemic uncertainty and common cause failures. IEEE Trans Reliab 64(4):1300–1309

    Article  Google Scholar 

  11. Nakagawa T (2005) Maintenance theory of reliability. Springer, London

    Google Scholar 

  12. Neuts M (1975) Probability distributions of phase type. Liber Amicorum Prof. Emeritus H. Florin. Department of Mathematics, University of Louvain, Belgium, pp 183–206

    Google Scholar 

  13. Neuts M (1979) A versatile Markovian point process. J Appl Probab 16:764–779

    Article  MathSciNet  MATH  Google Scholar 

  14. Neuts M (1981) Matrix geometric solutions in stochastic models. An algorithmic approach. John Hopkins, University Press, Baltimore

    MATH  Google Scholar 

  15. Ramírez-Cobo P, Lillo R, Wiper M (2010) Nonidentifiability of the two-state Markovian arrival process. J Appl Probab 47:630–649

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruiz-Castro JE (2015) A multi-state cold standby system modelled through a marked Markovian arrival process. In: Karagrigoriou A, Oliveira T, Skiadas CH (eds) Statistical, stochastic and data analysis methods and applications. ISAST: International Society for the Advancement of Science and Technology, pp 3–18

    Google Scholar 

  17. Ruiz-Castro JE (2015) A preventive maintenance policy for a standby system subject to internal failures and external shocks with loss of units. Int J Syst Sci 46(9):1600–1613

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruiz-Castro JE (2016) Complex multi-state systems modelled through marked Markovian arrival processes. Eur J Oper Res 252:852–865

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruiz-Castro JE (2016) Markov counting and reward processes for analyzing the performance of a complex system subject to random inspections. Reliab Eng Syst Saf 145:155–168

    Article  Google Scholar 

  20. Sheu S, Zhang Z (2013) An optimal age replacement policy for multi-state systems. IEEE Trans Reliab 62(3):722–735

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is partially supported by the Junta de Andalucía, Spain, under the grant FQM-307 and by the Ministerio de Economía y Competitividad, España, under Grant MTM2013-47929-P and by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Eloy Ruiz-Castro .

Editor information

Editors and Affiliations

Appendix

Appendix

The MMAP that governs the system has been introduced in Sect. 3. Some matrix blocks have been described in that section, the rest are given in this Appendix.

Matrix \({\mathbf{R}}_{p}^{k,O}\)

The elements of the matrix \({\mathbf{R}}_{p}^{k,O}\) for k = 1, …, K are given by

$${\mathbf{R}}_{p}^{k,O} = \left( {\begin{array}{*{20}c} {{\mathbf{D}}_{00}^{k,O} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{D}}_{10}^{k,O} } & {{\mathbf{D}}_{11}^{k,O} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{D}}_{21}^{k,O} } & {{\mathbf{D}}_{22}^{k,O} } & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \vdots & {} & \ddots & \ddots & {} & \vdots \\ {\mathbf{0}} & {} & {} & {{\mathbf{D}}_{k - 1,k - 2}^{k,O} } & {{\mathbf{D}}_{k - 1,k - 1}^{k,O} } & {\mathbf{0}} \\ {\mathbf{0}} & \cdots & {} & {} & {{\mathbf{D}}_{k,k - 1}^{k,O} } & {{\mathbf{D}}_{kk}^{k,O} } \\ \end{array} } \right),$$

where

$${\mathbf{D}}_{00}^{k,O} = {\mathbf{H}}_{0} + {\mathbf{H}}_{2}^{\prime} I_{{\left\{ {k = 1} \right\}}} ,$$

\({\mathbf{D}}_{l,l}^{k,O} \left( {i_{1} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = \left( {{\mathbf{H}}_{0} + {\mathbf{H}}_{2}^{\prime} I_{{\left\{ {l = k - 1} \right\}}} } \right) \,\otimes \, {\mathbf{S}}_{{i_{1} }}\), for \(l = 1, \ldots ,k - 1; \, i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l\),

$${\mathbf{D}}_{k,k}^{k,O} \left( {i_{1} , \ldots ,i_{k} ,;i_{1} , \ldots ,i_{k} } \right) = \left( {{\mathbf{L}} + {\mathbf{L}}^{0} {\varvec{\upgamma}}} \right) \,\otimes \, {\mathbf{S}}_{{i_{1} }} ,$$

for \(i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,k;k \ne K, \, i_{k} = 1,k = K,\)

$$\begin{array}{*{20}c} {{\mathbf{D}}_{10}^{k,O} \left( {i_{1} } \right) = {\mathbf{H}}_{0} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} } & ; & {i_{1} = 1,2,3,4} \\ \end{array} ;k \ge 2,$$
$$\begin{array}{*{20}c} {{\mathbf{D}}_{l,l - 1}^{k,O} \left( {i_{2} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = {\mathbf{H}}_{0} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} {\varvec{\upbeta}}^{{i_{2} }} } & ; & {l = 2, \ldots ,k - 1; \, i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l} \\ \end{array} ,$$
$${\mathbf{D}}_{k,k - 1}^{k,O} \left( {i_{2} , \ldots ,i_{k} ;i_{1} , \ldots ,i_{k} } \right) = {\varvec{\upalpha}} \,\otimes \, \left( {{\mathbf{L}} + {\mathbf{L}}^{0} {\varvec{\upgamma}}} \right) \,\otimes \, {\varvec{\upomega}} \,\otimes \, {\varvec{\upeta}} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} {\varvec{\upbeta}}^{{i_{2} }} ,$$

for \(i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,k;k \ne K, \, i_{k} = 1,k = K\),

$${\mathbf{D}}_{10}^{1,O} \left( 1 \right) = {\varvec{\upalpha}} \,\otimes \, \left( {{\mathbf{L}} + {\mathbf{L}}^{0} {\varvec{\upgamma}}} \right) \,\otimes \, {\varvec{\upomega}} \,\otimes \, {\varvec{\upeta}} \,\otimes \, {\mathbf{S}}_{1}^{0} .$$

Matrix \({\mathbf{R}}_{p}^{{k,B_{i} }}\)

The elements of the matrix \({\mathbf{R}}_{p}^{{k,B_{i} }}\) for i = 1, 2, 3 and for k = 2, …, K are given by

$${\mathbf{R}}_{p}^{{k,B_{i} }} = \left( {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{D}}_{01}^{{k,B_{i} }} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{D}}_{11}^{{k,B_{i} }} } & {{\mathbf{D}}_{12}^{{k,B_{i} }} } & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{D}}_{22}^{{k,B_{i} }} } & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \vdots & {} & \ddots & \ddots & {} & \vdots \\ {\mathbf{0}} & {} & {} & {{\mathbf{D}}_{k - 2,k - 2}^{{k,B_{i} }} } & {{\mathbf{D}}_{k - 2,k - 1}^{{k,B_{i} }} } & {\mathbf{0}} \\ {\mathbf{0}} & \cdots & {} & {} & {{\mathbf{D}}_{k - 1,k - 1}^{{k,B_{i} }} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} & \cdots & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right),\quad {\mathbf{R}}_{p}^{{1,B_{i} }} = {\mathbf{0}}$$
$${\mathbf{D}}_{01}^{{k,B_{i} }} \left( 2 \right) = {\mathbf{H}}_{2}^{i} \,\otimes \, {\varvec{\upbeta}}^{2} ,$$
$$\begin{array}{*{20}c} {{\mathbf{D}}_{l,l + 1}^{{k,B_{i} }} \left( {i_{1} , \ldots ,i_{l} ,2;i_{1} , \ldots ,i_{l} } \right) = {\mathbf{H}}_{2}^{i} \,\otimes \, {\mathbf{S}}_{{i_{1} }} } & ; & {l = 1, \ldots ,k - 2} \\ \end{array} ;i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l,$$
$$\begin{array}{*{20}c} {{\mathbf{D}}_{l,l}^{{k,B_{i} }} \left( {i_{2} , \ldots ,i_{l} ,2;i_{1} , \ldots ,i_{l} } \right) = {\mathbf{H}}_{2}^{i} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} {\varvec{\upbeta}}^{{i_{2} }} } & ; & {l = 1, \ldots ,k - 1} \\ \end{array} ;i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l.$$

Matrix \({\mathbf{R}}_{p}^{k,C}\)

The elements of the matrix \({\mathbf{R}}_{s}^{k,C}\) for k = 2, …, K are given by

$${\mathbf{R}}_{s}^{k,C} = \left( {\begin{array}{*{20}c} {{\mathbf{D}}_{00}^{k,C} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{D}}_{10}^{k,C} } & {{\mathbf{D}}_{11}^{k,C} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{D}}_{21}^{k,C} } & {{\mathbf{D}}_{22}^{k,C} } & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \vdots & {} & \ddots & \ddots & {} & \vdots \\ {\mathbf{0}} & {} & {} & {{\mathbf{D}}_{k - 1,k - 2}^{k,C} } & {{\mathbf{D}}_{k - 1,k - 1}^{k,C} } & {\mathbf{0}} \\ {\mathbf{0}} & \cdots & {} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right)$$

\({\mathbf{D}}_{00}^{k,C} = {\mathbf{H}}_{3}^{{}} I_{{\left\{ {k > 1} \right\}}}\),

$$\begin{array}{*{20}c} {{\mathbf{D}}_{l,l}^{k,C} \left( {i_{1} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = \left( {I_{{\left\{ {k \ne K - 1} \right\}}} {\mathbf{H}}_{3}^{{}} + I_{{\left\{ {k = K - 1} \right\}}} {\mathbf{H}}_{3}^{\prime} } \right) \,\otimes \, {\mathbf{S}}_{{i_{1} }} } & ; & {{\text{for }}l = 1, \ldots ,k - 1} \\ \end{array} ,$$

and \(i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l\),

$$\begin{array}{*{20}c} {{\mathbf{D}}_{l,l - 1}^{k,C} \left( {i_{2} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = {\mathbf{H}}_{3}^{{}} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} {\varvec{\upbeta}}^{{i_{2} }} } & ; & {l = 2, \ldots ,k - 1 \, ;} \\ \end{array} \, i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l,$$
$$\begin{array}{*{20}c} {{\mathbf{D}}_{10}^{k,C} \left( {i_{1} } \right) = {\mathbf{H}}_{3}^{{}} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} } & ; & {i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l} \\ \end{array} .$$

Matrix \({\mathbf{R}}_{s}^{k,C}\)

The elements of the matrix \({\mathbf{R}}_{s}^{k,C}\) for k = 2, …, K are given by

\({\mathbf{R}}_{s}^{k,C} = \left( {\begin{array}{*{20}c} {{\mathbf{D}}_{00}^{k,C} } & {\mathbf{0}} & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{D}}_{10}^{k,C} } & {{\mathbf{D}}_{11}^{k,C} } & {\mathbf{0}} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & {{\mathbf{D}}_{21}^{k,C} } & {{\mathbf{D}}_{22}^{k,C} } & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \vdots & {} & \ddots & \ddots & {} & \vdots \\ {\mathbf{0}} & {} & {} & {{\mathbf{D}}_{k - 1,k - 2}^{k,C} } & {{\mathbf{D}}_{k - 1,k - 1}^{k,C} } & {\mathbf{0}} \\ {\mathbf{0}} & \cdots & {} & \cdots & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right)\),

where

$${\mathbf{D}}_{00}^{k,C} = {\mathbf{H}}_{3}^{{}} I_{{\left\{ {k > 1} \right\}}} ;$$

\({\mathbf{D}}_{l,l}^{k,C} \left( {i_{1} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = \left( {I_{{\left\{ {k \ne K - 1} \right\}}} {\mathbf{H}}_{3}^{{}} + I_{{\left\{ {k = K - 1} \right\}}} {\mathbf{H}}_{3}^{\prime} } \right) \,\otimes \, {\mathbf{S}}_{{i_{1} }}\),

for \(l = 1, \ldots ,k - 1;i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l\),

\({\mathbf{D}}_{l,l - 1}^{k,C} \left( {i_{2} , \ldots ,i_{l} ;i_{1} , \ldots ,i_{l} } \right) = {\mathbf{H}}_{3}^{{}} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0} {\varvec{\upbeta}}^{{i_{2} }}\), for \(l = 2, \ldots ,k - 1; \, i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l\),

\({\mathbf{D}}_{10}^{k,C} \left( {i_{1} } \right) = {\mathbf{H}}_{3}^{{}} \,\otimes \, {\mathbf{S}}_{{i_{1} }}^{0}\), for \(i_{s} = 1,2,3,4{\text{ for }}s = 1, \ldots ,l\).

Matrix \({\mathbf{R}}_{p}^{1,FC}\)

The elements of the matrix \({\mathbf{R}}_{s}^{1,FC}\) are given by

$${\mathbf{R}}_{s}^{1,FC} = \left( {\begin{array}{*{20}c} {{\mathbf{D}}_{00}^{1,C} } & {\mathbf{0}} \\ {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right),{\text{where}}\,{\mathbf{D}}_{00}^{1,C} = {\mathbf{H}}_{3}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ruiz-Castro, J.E. (2018). A D-MMAP to Model a Complex Multi-state System with Loss of Units. In: Lisnianski, A., Frenkel, I., Karagrigoriou, A. (eds) Recent Advances in Multi-state Systems Reliability. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-63423-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63423-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63422-7

  • Online ISBN: 978-3-319-63423-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics