Skip to main content

Going to Extreme Precision Measurements: Detecting Cosmic Rays with SKA1-Low

  • Chapter
  • First Online:
Emission of Radio Waves in Particle Showers

Part of the book series: Springer Theses ((Springer Theses))

  • 530 Accesses

Abstract

In the context of this thesis, principle ideas, as presented in this chapter, as well as some figures and preliminary results, were already published in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aab et al., Depth of maximum of air-shower profiles at the Pierre Auger observatory. I. measurements at energies above 1017.8 eV. Phys. Rev. D 90(12) 122005 (2014). doi:10.1103/PhysRevD.90.122005

  2. A. Aab et al., The Pierre Auger Observatory Upgrade–preliminary design report (2016), arXiv:1604.03637 [astro-ph.IM]

  3. M.G. Aartsen et al., Measurement of the cosmic ray energy spectrum with ice top-73. Phys. Rev. D 88(4), 042004 (2013). doi:10.1103/PhysRevD.88.042004

    Article  ADS  Google Scholar 

  4. W.D. Apel et al., KASCADE-grande measurements of energy spectra for elemental groups of cosmic rays. Astropart. Phys. 47, 54–66 (2013). doi:10.1016/j.astropartphys.2013.06.004

    Article  ADS  Google Scholar 

  5. W.D. Apel et al., Reconstruction of the energy and depth of maximum of cosmic-ray air-showers from LOPES radio measurements. Phys. Rev. D 90(6), 062001 (2014). doi:10.1103/PhysRevD.90.062001

    Article  ADS  Google Scholar 

  6. G. Battistoni et al., The FLUKA code: an accurate simulation tool for particle therapy. Front. Oncol. 6, 116 (2016). doi:10.3389/fonc.2016.00116

  7. P.A. Bezyazeekov et al., Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex. J. Cosmol. Astropart. Phys. 1601(01), 052 (2016). doi:10.1088/1475-7516/2016/01/052

    Article  ADS  Google Scholar 

  8. N. Budnev et al., Tunka-25 air shower Cherenkov array: the main results. Astropart. Phys. 50-52, 18–25 (2013). doi:10.1016/j.astropartphys.2013.09.006

  9. S. Buitink et al., Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles. Phys. Rev. D 90(8), 082003 (2014). doi:10.1103/PhysRevD.90.082003

    Article  ADS  Google Scholar 

  10. S. Buitink et al., A large light-mass component of cosmic rays at 1017–1017.5 eV from radio observations. Nature 531, 70 (2016). doi:10.1038/nature16976

  11. S. Buitink, Private communication (2016)

    Google Scholar 

  12. F. Diogo, Measurement of the average electromagnetic longitudinal shower profile at the Pierre Auger Observatory. in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015): PoS(ICRC2015)413 (2016), http://pos.sissa.it/archive/conferences/236/413/ICRC2015_413.pdf

  13. R. Engel, D. Heck, T. Pierog, Extensive air showers and hadronic interactions at high energy. Ann. Rev. Nucl. Part. Sci. 61, 467–489 (2011). doi:10.1146/annurev.nucl.012809.104544

    Article  ADS  Google Scholar 

  14. F. Gaté, Xmax reconstruction from amplitude information with AERA. Euro. Phys. J. Web Conf. 135, 01007 (2017). doi:10.1051/epjconf/201713501007

  15. T.K. Gaisser, A.M. Hillas, Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers, in Proceedings of the 15th International Cosmic Ray Conference (ICRC1977), vol. 8 (1977), pp. 353–357, http://adsabs.harvard.edu/abs/1977ICRC....8..353G

  16. A. Haungs et al., High-energy cosmic rays measured with KASCADE-grande, in Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013): ID 0398 (2013), arXiv:1308.1485 [astro-ph.HE]

  17. D. Heck et al., CORSIKA: A Monte Carlo code to simulate extensive air showers. FZKA Report 6019, Forschungszentrum Karlsruhe (1998), https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.pdf

  18. T. Huege, M. Ludwig, C.W. James, Simulating radio emission from air showers with CoREAS, in AIP Confernce Proceedings, vol. 1535 (2013), p. 128. doi:10.1063/1.4807534., arXiv:1301.2132 [astro-ph.HE]

  19. T. Huege et al., Enabling detection of cosmic ray air showers with SKA-low. Engeneering change proposal submitted to the SKA organisation (2015)

    Google Scholar 

  20. T. Huege et al., High-precision measurements of extensive air showers with the SKA (2015). arXiv:1508.03465 [astro-ph.IM], http://pos.sissa.it/archive/conferences/236/309/ICRC2015_309.pdf

  21. T. Huege et al., Ultimate precision in cosmic-ray detection—the SKA, in Proceedings of the 7th Acoustic and Radio EeV Neutrino Detection Activities (ARENA2016). European Physical Journal of Web Conferences, vol. 135 (2017), pp. 02003. doi:10.1051/epjconf/201713502003

  22. T. Huege, Radio detection of cosmic ray air showers in the digital era. Phys. Rep. 620, 1–52 (2016). doi:10.1016/j.physrep.2016.02.001

    Article  ADS  MathSciNet  Google Scholar 

  23. SKA Organisation, SKA1-Low Configuration draft. (2015), http://astronomers.skatelescope.org/wp-content/uploads/2015/11/SKA1-Low-Configuration_V4a.pdf

  24. S. Ostapchenko, QGSJET-II: physics, recent improvements, and results for air showers, in Proceedings of the 17th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2012) (2013). doi:10.1051/epjconf/20125202001

  25. F. Riehn, Private communication (2016)

    Google Scholar 

  26. R.S. Roger et al., The radio emission from the galaxy at 22 MHz. Astron. Astrophys. Sup. 137, 7–19 (1999). doi:10.1051/aas:1999239

    Article  ADS  Google Scholar 

  27. F.G. Schröder et al., Investigation of the radio wavefront of air showers with LOPES measurements and CoREAS simulations, in Proceedings of the 6th Acoustic and Radio EeV Neutrino Detection Activities (ARENA2014) (2015), arXiv:1507.07753, [astro-ph.IM]

  28. H. Schoorlemmer et al., Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight. Astropart. Phys. 77, 32–43 (2016). doi:10.1016/j.astropartphys.2016.01.001

    Article  ADS  Google Scholar 

  29. S. Thoudam et al., LORA: a scintillator array for LOFAR to measure extensive air showers. Nucl. Instrum. Method A767, 339–346 (2014). doi:10.1016/j.nima.2014.08.021

    Article  ADS  Google Scholar 

  30. T. Winchen, Private communication (2016)

    Google Scholar 

  31. A. Zilles, S. Buitink, T. Huege, Initial simulation study on high-precision radio measurements of the depth of shower maximum with SKA1-low, in Proceedings of the 7th Acoustic and Radio EeV Neutrino Detection Activities (ARENA2016). European Physical Journal Web Conferences, vol. 135 (2017), p. 02004. doi:10.1051/epjconf/201713502004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Zilles .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zilles, A. (2017). Going to Extreme Precision Measurements: Detecting Cosmic Rays with SKA1-Low. In: Emission of Radio Waves in Particle Showers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63411-1_6

Download citation

Publish with us

Policies and ethics