Advertisement

Electroweak Phase Transition and Baryogenesis

  • Jason Tsz Shing YueEmail author
Chapter
  • 272 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The observed baryon asymmetry remains an open question at the intersection of cosmology and particle physics.

References

  1. 1.
    R.P. Feynman, Gauge Theories Google Scholar
  2. 2.
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589
  3. 3.
    A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967)Google Scholar
  4. 4.
    I. Affleck, M. Dine, A new mechanism for baryogenesis. Nucl. Phys. B 249, 361 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    A. Kobakhidze, L. Wu, J. Yue, Electroweak baryogenesis with anomalous higgs couplings. JHEP 04, 011 (2016). arXiv:1512.08922
  8. 8.
    N. Blinov, Phase transitions: applications to physics beyond the Standard Model. Ph.D. thesis, British Columbia University, 2015Google Scholar
  9. 9.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, A nonperturbative analysis of the finite T phase transition in \(SU(2) \times U(1)\) electroweak theory. Nucl. Phys. B 493, 413–438 (1997). arXiv:hep-lat/9612006 ADSCrossRefGoogle Scholar
  10. 10.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Is there a hot electroweak phase transition at \(m_H\gtrsim {m}_W\)? Phys. Rev. Lett. 77, 2887–2890 (1996). arXiv:hep-ph/9605288 ADSCrossRefGoogle Scholar
  11. 11.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, The electroweak phase transition: a nonperturbative analysis. Nucl. Phys. B 466, 189–258 (1996). arXiv:hep-lat/9510020 ADSCrossRefGoogle Scholar
  12. 12.
    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, M.E. Shaposhnikov, The universality class of the electroweak theory. Nucl. Phys. B 532, 283–314 (1998). arXiv:hep-lat/9805013 ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    F. Csikor, Z. Fodor, J. Heitger, Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 82, 21–24 (1999). arXiv:hep-ph/9809291 ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Aoki, F. Csikor, Z. Fodor, A. Ukawa, The Endpoint of the first order phase transition of the \(SU(2)\) gauge Higgs model on a four-dimensional isotropic lattice. Phys. Rev. D 60, 013001 (1999). arXiv:hep-lat/9901021 ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A 9, 795–810 (1994). arXiv:hep-ph/9312215 ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, C. Quimbay, Standard model CP violation and baryon asymmetry. Part 2: finite temperature. Nucl. Phys. B 430, 382–426 (1994). arXiv:hep-ph/9406289
  17. 17.
    P. Huet, E. Sather, Electroweak baryogenesis and standard model CP violation. Phys. Rev. D 51, 379–394 (1995). arXiv:hep-ph/9404302 ADSCrossRefGoogle Scholar
  18. 18.
    T. Konstandin, T. Prokopec, M.G. Schmidt, Axial currents from CKM matrix CP violation and electroweak baryogenesis. Nucl. Phys. B 679, 246–260 (2004). arXiv:hep-ph/0309291 ADSCrossRefGoogle Scholar
  19. 19.
    X. Zhang, S.K. Lee, K. Whisnant, B.L. Young, Phenomenology of a nonstandard top quark Yukawa coupling. Phys. Rev. D 50, 7042–7047 (1994). arXiv:hep-ph/9407259 ADSCrossRefGoogle Scholar
  20. 20.
    K. Whisnant, B.-L. Young, X. Zhang, Unitarity and anomalous top quark Yukawa couplings. Phys. Rev. D 52, 3115–3118 (1995). arXiv:hep-ph/9410369 ADSCrossRefGoogle Scholar
  21. 21.
    S.J. Huber, M. Pospelov, A. Ritz, Electric dipole moment constraints on minimal electroweak baryogenesis. Phys. Rev. D 75, 036006 (2007). arXiv:hep-ph/0610003 ADSCrossRefGoogle Scholar
  22. 22.
    J. Shu, Y. Zhang, Impact of a CP violating Higgs sector: from LHC to baryogenesis. Phys. Rev. Lett. 111, 091801 (2013). arXiv:1304.0773 ADSCrossRefGoogle Scholar
  23. 23.
    C. Delaunay, C. Grojean, J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking. JHEP 0804, 029 (2008). arXiv:0711.2511 ADSCrossRefGoogle Scholar
  24. 24.
    C. Grojean, G. Servant, J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff. Phys. Rev. D 71, 036001 (2005). arXiv:hep-ph/0407019 ADSCrossRefGoogle Scholar
  25. 25.
    L. Fromme, Electroweak baryogenesis with dimension-6 Higgs interactions. Surv. High Energ. Phys. 19, 193–201 (2004). arXiv:hep-ph/0504222 ADSCrossRefGoogle Scholar
  26. 26.
    L. Fromme, S.J. Huber, Top transport in electroweak baryogenesis. JHEP 0703, 049 (2007). arXiv:hep-ph/0604159 Google Scholar
  27. 27.
    D. Bodeker, L. Fromme, S.J. Huber, M. Seniuch, The Baryon asymmetry in the standard model with a low cut-off. JHEP 0502, 026 (2005). arXiv:hep-ph/0412366 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Dine, P. Huet, R.L. Singleton Jr., L. Susskind, Creating the baryon asymmetry at the electroweak phase transition. Phys. Lett. B 257, 351–356 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    S. Ham, S. Oh, Electroweak phase transition in the standard model with a dimension-six Higgs operator at one-loop level. Phys. Rev. D 70, 093007 (2004). arXiv:hep-ph/0408324 ADSCrossRefGoogle Scholar
  30. 30.
    P. Huang, A. Joglekar, B. Li, C.E.M. Wagner, Probing the electroweak phase transition at the LHC. Phys. Rev. D 93, 055049 (2016). arXiv:1512.00068
  31. 31.
    F.P. Huang, P.-H. Gu, P.-F. Yin, Z.-H. Yu, X. Zhang, Esting the electroweak phase transition and electroweak baryogenesis at the LHC and a circular electron-positron collider. Phys. Rev. D 93, 103515 (2016). arXiv:1511.03969
  32. 32.
    N. Liu, S. Hu, B. Yang, J. Han, Impact of top-Higgs couplings on Di-Higgs production at future colliders. JHEP 01, 008 (2015). arXiv:1408.4191 ADSGoogle Scholar
  33. 33.
    F. Goertz, A. Papaefstathiou, L.L. Yang, J. Zurita, Higgs boson pair production in the D = 6 extension of the SM. JHEP 04, 167 (2015). arXiv:1410.3471 ADSCrossRefGoogle Scholar
  34. 34.
    C.-T. Lu, J. Chang, K. Cheung, J.S. Lee, An exploratory study of Higgs-boson pair production. JHEP 08, 133 (2015). arXiv:1505.00957
  35. 35.
    D. Curtin, P. Meade, C.-T. Yu, Testing electroweak baryogenesis with future colliders. JHEP 11, 127 (2014). arXiv:1409.0005 ADSCrossRefGoogle Scholar
  36. 36.
    D.J.H. Chung, A.J. Long, L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes. Phys. Rev. D 87, 023509 (2013). arXiv:1209.1819 ADSCrossRefGoogle Scholar
  37. 37.
    P.H. Damgaard, A. Haarr, D. O’Connell, A. Tranberg, Effective field theory and electroweak baryogenesis in the singlet-extended standard model. arXiv:1512.01963
  38. 38.
    A. Katz, M. Perelstein, Higgs couplings and electroweak phase transition. JHEP 07, 108 (2014). arXiv:1401.1827 ADSCrossRefGoogle Scholar
  39. 39.
    S. Profumo, M.J. Ramsey-Musolf, G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition. JHEP 08, 010 (2007). arXiv:0705.2425 ADSCrossRefGoogle Scholar
  40. 40.
    J. Kozaczuk. Bubble expansion and the viability of singlet-driven electroweak baryogenesis. arXiv:1506.04741
  41. 41.
    A. Noble, M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition. Phys. Rev. D 78, 063518 (2008). arXiv:0711.3018 ADSCrossRefGoogle Scholar
  42. 42.
    A.V. Kotwal, M.J. Ramsey-Musolf, J.M. No, P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier. arXiv:1605.06123
  43. 43.
    J.M. Cline, K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs. JCAP 1301, 012 (2013). arXiv:1210.4196 ADSCrossRefGoogle Scholar
  44. 44.
    M. Jiang, L. Bian, W. Huang, J. Shu, Impact of a complex singlet: electroweak baryogenesis and dark matter. Phys. Rev. D 93, 065032 (2016). arXiv:1502.07574
  45. 45.
    K. Fuyuto, J. Hisano, E. Senaha, Toward verification of electroweak baryogenesis by electric dipole moments. Phys. Lett. B 755, 491–497 (2016). arXiv:1510.04485
  46. 46.
    Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions. JHEP 02, 011 (2016). arXiv:1510.00725
  47. 47.
    W. Chao, M.J. Ramsey-Musolf, Electroweak baryogenesis, electric dipole moments, and higgs diphoton decays. JHEP 10, 180 (2014). arXiv:1406.0517 ADSCrossRefGoogle Scholar
  48. 48.
    L.D. McLerran, M.E. Shaposhnikov, N. Turok, M.B. Voloshin, Why the baryon asymmetry of the universe is approximately \(\sim 10^{-10}\). Phys. Lett. B 256, 451–456 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    N. Turok, J. Zadrozny, Electroweak baryogenesis in the two doublet model. Nucl. Phys. B 358, 471–493 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    J.M. Cline, K. Kainulainen, A.P. Vischer, Dynamics of two Higgs doublet CP violation and baryogenesis at the electroweak phase transition. Phys. Rev. D 54, 2451–2472 (1996). arXiv:hep-ph/9506284 ADSCrossRefGoogle Scholar
  51. 51.
    A.T. Davies, C.D. froggatt, G. Jenkins, R.G. Moorhouse, Baryogenesis constraints on two Higgs doublet models. Phys. Lett. B 336, 464–470 (1994)Google Scholar
  52. 52.
    L. Fromme, S.J. Huber, M. Seniuch, Baryogenesis in the two-Higgs doublet model. JHEP 11, 038 (2006). arXiv:hep-ph/0605242 ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Cline, K. Kainulainen, M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies. JHEP 11, 089 (2011). arXiv:1107.3559 ADSzbMATHCrossRefGoogle Scholar
  54. 54.
    N. Blinov, J. Kozaczuk, D.E. Morrissey, C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking. Phys. Rev. D 92, 035012 (2015). arXiv:1504.05195
  55. 55.
    A. Katz, M. Perelstein, M.J. Ramsey-Musolf, P. Winslow, Stop-catalyzed baryogenesis beyond the MSSM. Phys. Rev. D 92, 095019 (2015). arXiv:1509.02934
  56. 56.
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction. Phys. Lett. B 84, 193 (1979)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    G. Bonneau, Consistency in dimensional regularization with \(\gamma _5\). Phys. Lett. B 96, 147 (1980)ADSCrossRefGoogle Scholar
  58. 58.
    A. Zee, Quantum Field Theory in a Nutshell (2003)Google Scholar
  59. 59.
    J.K. Boomsma, D. Boer, The High temperature CP-restoring phase transition at \(\theta \) = \(\pi \). Phys. Rev. D 80, 034019 (2009). arXiv:0905.4660 ADSCrossRefGoogle Scholar
  60. 60.
    C. Bloch, Sur la détermination de l’état fondamental d’un système de particules. Nucl. Phys. 7, 451–458 (1958)CrossRefGoogle Scholar
  61. 61.
    R.L. Mills, Propagators for Many-particle Systems: An Elementary Treatment (Gordon and Breach, New York, 1969)Google Scholar
  62. 62.
    H. Matsumoto, Y. Nakano, H. Umezawa, An equivalence class of quantum field theories at finite temperature. J. Math. Phys. 25, 3076–3085 (1984)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    T. Matsubara, A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    M. Quiros, Field theory at finite temperature and phase transitions. Acta Phys. Polon. B 38, 3661–3703 (2007)ADSMathSciNetGoogle Scholar
  65. 65.
    R.F. Langbein, Thermodynamics and inflation. Ph.D. thesis, physics, 1992Google Scholar
  66. 66.
    T.A. Chowdhury, A possible link between the electroweak phase transition and the dark matter of the universe. Ph.D. thesis, SISSA, Trieste, 2014Google Scholar
  67. 67.
    J.I. Kapusta, C. Gale, Finite Temperature Field Theory (2006)Google Scholar
  68. 68.
    R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems. J. Phys. Soc. Jap 12, 570–586 (1957)Google Scholar
  69. 69.
    P.C. Martin, J.S. Schwinger, Theory of many particle systems. 1. Phys. Rev. 115, 1342–1373 (1959)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    H.H. Patel, M.J. Ramsey-Musolf, B. Washout, Electroweak phase transition, and perturbation theory. JHEP 07, 029 (2011). arXiv:1101.4665 ADSzbMATHCrossRefGoogle Scholar
  71. 71.
    J. Elias-Miró, J. Espinosa, T. Konstandin, Taming infrared divergences in the effective potential. JHEP 1408, 034 (2014). arXiv:1406.2652 ADSCrossRefGoogle Scholar
  72. 72.
    S.P. Martin, Taming the Goldstone contributions to the effective potential. Phys. Rev. D 90, 016013 (2014). arXiv:1406.2355 ADSCrossRefGoogle Scholar
  73. 73.
    A. Pilaftsis, D. Teresi, Symmetry-improved 2PI approach to the Goldstone-Boson IR problem of the SM effective potential. arXiv:1511.05347
  74. 74.
    H. Meyer-Ortmanns, T. Reisz, Principles of Phase Structures in Particle Physics (2007)Google Scholar
  75. 75.
    D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (World Scientific, Hackensack, 2011)zbMATHCrossRefGoogle Scholar
  76. 76.
    M.E. Shaposhnikov, The Higgs puzzle: what can we learn from electroweak phase transition? in Proceedings of the Higgs Puzzle - What Can We Learn From LEP-2, LHC, NLC and FMC? Ringberg Workshop, Tegernsee, Germany, December 8–13 (1996), pp. 289–296Google Scholar
  77. 77.
    S. Elitzur, Impossibility of spontaneously breaking local symmetries. Phys. Rev. D 12, 3978–3982 (1975)ADSCrossRefGoogle Scholar
  78. 78.
    J. Frohlich, G. Morchio, F. Strocchi, Higgs phenomenon without symmetry breaking order parameter. Nucl. Phys. B 190, 553–582 (1981)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    S.R. Coleman, F. De Luccia, Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 15, 2929–2936 (1977)ADSCrossRefGoogle Scholar
  81. 81.
    C.G. Callan Jr., S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections. Phys. Rev. D 16, 1762–1768 (1977)ADSCrossRefGoogle Scholar
  82. 82.
    A.D. Linde, Decay of the false vacuum at finite temperature. Nucl. Phys. B 216, 421 (1983)ADSCrossRefGoogle Scholar
  83. 83.
    A.D. Linde, Fate of the false vacuum at finite temperature: Theory and applications. Phys. Lett. B 100, 37 (1981)ADSCrossRefGoogle Scholar
  84. 84.
    G.D. Moore, Electroweak bubble wall friction: analytic results. JHEP 03, 006 (2000). arXiv:hep-ph/0001274 ADSCrossRefGoogle Scholar
  85. 85.
    A. Megevand, F.A. Membiela, A.D. Sanchez, Lower bound on the electroweak wall velocity from hydrodynamic instability. JCAP 1503, 051 (2015). arXiv:1412.8064 ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    A. Megevand, A.D. Sanchez, Velocity of electroweak bubble walls. Nucl. Phys. B 825, 151–176 (2010). arXiv:0908.3663 ADSzbMATHCrossRefGoogle Scholar
  87. 87.
    M. Dine, R.G. Leigh, P. Huet, A.D. Linde, D.A. Linde, Comments on the electroweak phase transition. Phys. Lett. B 283, 319–325 (1992). arXiv:hep-ph/9203201 ADSCrossRefGoogle Scholar
  88. 88.
    M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde, D.A. Linde, Towards the theory of the electroweak phase transition. Phys. Rev. D 46, 550–571 (1992). arXiv:hep-ph/9203203 ADSCrossRefGoogle Scholar
  89. 89.
    J.S. Bell, R. Jackiw, A PCAC puzzle: \(\pi ^0 \rightarrow \gamma \gamma \) in the sigma model. Nuovo Cim. A 60, 47–61 (1969)ADSCrossRefGoogle Scholar
  90. 90.
    S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)ADSCrossRefGoogle Scholar
  91. 91.
    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432–3450 (1976)Google Scholar
  92. 92.
    G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett 37, 8–11 (1976)Google Scholar
  93. 93.
    F.R. Klinkhamer, N. Manton, A saddle point solution in the Weinberg-Salam theory. Phys. Rev. D 30, 2212 (1984)ADSCrossRefGoogle Scholar
  94. 94.
    N. Manton, Topology in the Weinberg-Salam theory. Phys. Rev. D 28, 2019 (1983)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    L. Carson, X. Li, L.D. McLerran, R.-T. Wang, Exact computation of the small fluctuation determinant around a sphaleron. Phys. Rev. D 42, 2127–2143 (1990)ADSCrossRefGoogle Scholar
  96. 96.
    P.B. Arnold, L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D 36, 581 (1987)ADSCrossRefGoogle Scholar
  97. 97.
    Y. Burnier, M. Laine, M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover. JCAP 0602, 007 (2006). arXiv:hep-ph/0511246 ADSCrossRefGoogle Scholar
  98. 98.
    J. Baacke, S. Junker, Quantum fluctuations around the electroweak sphaleron. Phys. Rev. D 49, 2055–2073 (1994). arXiv:hep-ph/9308310 ADSCrossRefGoogle Scholar
  99. 99.
    J. Baacke, S. Junker, Quantum fluctuations of the electroweak sphaleron: erratum and addendum. Phys. Rev. D 50, 4227–4228 (1994). arXiv:hep-th/9402078 ADSCrossRefGoogle Scholar
  100. 100.
    X. Zhang, B. Young, S. Lee, Electroweak sphaleron for effective theory in the limit of large Higgs boson mass. Phys. Rev. D 51, 5327–5330 (1995). arXiv:hep-ph/9406322 ADSCrossRefGoogle Scholar
  101. 101.
    S. Braibant, Y. Brihaye, J. Kunz, Sphalerons at finite temperature. Int. J. Mod. Phys. A 8, 5563–5574 (1993). arXiv:hep-ph/9302314 ADSCrossRefGoogle Scholar
  102. 102.
    Y. Brihaye, J. Kunz, Electroweak bubbles and sphalerons. Phys. Rev. D 48, 3884–3890 (1993). arXiv:hep-ph/9304256 ADSCrossRefGoogle Scholar
  103. 103.
    Y. Brihaye, J. Kunz, Sphalerons at finite mixing angle: perturbative analysis. Phys. Rev. D 47, 4789–4792 (1993)ADSCrossRefGoogle Scholar
  104. 104.
    M. Herranen, K. Kainulainen, P.M. Rahkila, Coherent quasiparticle approximation (cQPA) and nonlocal coherence. J. Phys. Conf. Ser. 220, 012007 (2010). arXiv:0912.2490 zbMATHCrossRefGoogle Scholar
  105. 105.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Baryogenesis at the weak phase transition. Nucl. Phys. B 349, 727–742 (1991)ADSCrossRefGoogle Scholar
  106. 106.
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf, S. Tulin, Lepton-mediated electroweak baryogenesis. Phys. Rev. D 81, 063506 (2010). arXiv:0905.4509 ADSCrossRefGoogle Scholar
  107. 107.
    M. Carena, M. Quiros, M. Seco, C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis. Nucl. Phys. B 650, 24–42 (2003). arXiv:hep-ph/0208043 ADSCrossRefGoogle Scholar
  108. 108.
    J.M. Cline, M. Joyce, K. Kainulainen, Supersymmetric electroweak baryogenesis. JHEP 0007, 018 (2000). arXiv:hep-ph/0006119 Google Scholar
  109. 109.
    J.M. Cline, M. Joyce, K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation. Phys. Lett. B 417, 79–86 (1998). arXiv:hep-ph/9708393 ADSCrossRefGoogle Scholar
  110. 110.
    J.M. Cline, K. Kainulainen, A New source for electroweak baryogenesis in the MSSM. Phys. Rev. Lett. 85, 5519–5522 (2000). arXiv:hep-ph/0002272 ADSCrossRefGoogle Scholar
  111. 111.
    M. Joyce, T. Prokopec, N. Turok, Nonlocal electroweak baryogenesis. Part 2: The classical regime. Phys. Rev. D 53, 2958–2980 (1996). arXiv:hep-ph/9410282 ADSCrossRefGoogle Scholar
  112. 112.
    M. Joyce, T. Prokopec, N. Turok, Nonlocal electroweak baryogenesis. Part 1: thin wall regime. Phys. Rev. D 53, 2930–2957 (1996). arXiv:hep-ph/9410281 ADSCrossRefGoogle Scholar
  113. 113.
    M. Joyce, T. Prokopec, N. Turok, Electroweak baryogenesis from a classical force. Phys. Rev. Lett. 75, 1695–1698 (1995). arXiv:hep-ph/9408339 ADSCrossRefGoogle Scholar
  114. 114.
    K. Kainulainen, T. Prokopec, M.G. Schmidt, S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis. JHEP 06, 031 (2001). arXiv:hep-ph/0105295 ADSCrossRefGoogle Scholar
  115. 115.
    K. Kainulainen, T. Prokopec, M.G. Schmidt, S. Weinstock, Semiclassical force for electroweak baryogenesis: three-dimensional derivation. Phys. Rev. D 66, 043502 (2002). arXiv:hep-ph/0202177 ADSCrossRefGoogle Scholar
  116. 116.
    T. Prokopec, M.G. Schmidt, S. Weinstock, Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1. Ann. Phys. 314, 208–265 (2004). arXiv:hep-ph/0312110 ADSzbMATHCrossRefGoogle Scholar
  117. 117.
    T. Prokopec, M.G. Schmidt, S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. part II. Ann. Phys. 314, 267–320 (2004). arXiv:hep-ph/0406140 ADSzbMATHCrossRefGoogle Scholar
  118. 118.
    K. Kainulainen, T. Prokopec, M.G. Schmidt, S. Weinstock, Quantum Boltzmann equations for electroweak baryogenesis including gauge fields, in 5th International Conference on Particle Physics and the Early Universe (COSMO 2001) Rovaniemi, Finland, August 30-September 4, 2001 (2002). arXiv:hep-ph/0201293
  119. 119.
    T. Prokopec, K. Kainulainen, M.G. Schmidt, S. Weinstock, Kinetic approach to electroweak baryogenesis, in 5th International Conference on Strong and Electroweak Matter (SEWM 2002) Heidelberg, Germany, October 2–5, 2002 (2003). arXiv:hep-ph/0302192
  120. 120.
    V. Cirigliano, C. Lee, S. Tulin, Resonant flavor oscillations in electroweak baryogenesis. Phys. Rev. D 84, 056006 (2011). arXiv:1106.0747 ADSCrossRefGoogle Scholar
  121. 121.
    P. Huet, A.E. Nelson, Electroweak baryogenesis in supersymmetric models. Phys. Rev. D 53, 4578–4597 (1996). arXiv:hep-ph/9506477 ADSCrossRefGoogle Scholar
  122. 122.
    P. Huet, A.E. Nelson, CP violation and electroweak baryogenesis in extensions of the standard model. Phys. Lett. B 355, 229–235 (1995). arXiv:hep-ph/9504427 ADSCrossRefGoogle Scholar
  123. 123.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Spontaneous baryogenesis at the weak phase transition. Phys. Lett. B 263, 86–92 (1991)ADSCrossRefGoogle Scholar
  124. 124.
    M. Seniuch, Analysis of the phase structure in extended Higgs models. Ph.D. thesis, Bielefeld University, 2006Google Scholar
  125. 125.
    A. Riotto, Recent developments in electroweak baryogenesis, in Proceedings of 33rd Rencontres de Moriond Fundamental Parameters in Cosmology (1998), pp. 41–46. arXiv:hep-ph/9802240
  126. 126.
    C. Lee, V. Cirigliano, M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis. Phys. Rev. D 71, 075010 (2005). arXiv:hep-ph/0412354 ADSCrossRefGoogle Scholar
  127. 127.
    D.J.H. Chung, B. Garbrecht, M. Ramsey-Musolf, S. Tulin, Supergauge interactions and electroweak baryogenesis. JHEP 12, 067 (2009). arXiv:0908.2187 Google Scholar
  128. 128.
    E. Nardi, Y. Nir, J. Racker, E. Roulet, On Higgs and sphaleron effects during the leptogenesis era. JHEP 01, 068 (2006). arXiv:hep-ph/0512052 ADSCrossRefGoogle Scholar
  129. 129.
    G.D. Moore, Computing the strong sphaleron rate. Phys. Lett. B 412, 359–370 (1997). arXiv:hep-ph/9705248 ADSCrossRefGoogle Scholar
  130. 130.
    T. Konstandin, Quantum transport and electroweak baryogenesis. Phys. Usp. 56, 747–771 (2013). arXiv:1302.6713 ADSCrossRefGoogle Scholar
  131. 131.
    A. Kobakhidze, L. Wu, J. Yue, Anomalous top-higgs couplings and top polarisation in single top and Higgs associated production at the LHC. JHEP 10, 100 (2014). arXiv:1406.1961 ADSCrossRefGoogle Scholar
  132. 132.
    G.F. Giudice, M.E. Shaposhnikov, Strong sphalerons and electroweak baryogenesis. Phys. Lett. B 326, 118–124 (1994). arXiv:hep-ph/9311367 ADSCrossRefGoogle Scholar
  133. 133.
    G.R. Farrar, M.E. Shaposhnikov, Baryon asymmetry of the universe in the minimal Standard Model. Phys. Rev. Lett. 70, 2833–2836 (1993). arXiv:hep-ph/9305274 ADSCrossRefGoogle Scholar
  134. 134.
    G.R. Farrar, M.E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory. Phys. Rev. D 50, 774 (1994). arXiv:hep-ph/9305275 ADSCrossRefGoogle Scholar
  135. 135.
    T. Konstandin, G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking. JCAP 1107, 024 (2011). arXiv:1104.4793 ADSCrossRefGoogle Scholar
  136. 136.
    A. Tranberg, Standard model CP-violation and cold electroweak baryogenesis. Phys. Rev. D 84, 083516 (2011). arXiv:1009.2358 ADSCrossRefGoogle Scholar
  137. 137.
    Z.-G. Mou, P.M. Saffin, A. Tranberg, Cold baryogenesis from first principles in the two-Higgs doublet model with fermions. JHEP 06, 163 (2015). arXiv:1505.02692
  138. 138.
    K. Enqvist, P. Stephens, O. Taanila, A. Tranberg, Fast electroweak symmetry breaking and cold electroweak baryogenesis. JCAP 1009, 019 (2010). arXiv:1005.0752 ADSCrossRefGoogle Scholar
  139. 139.
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. JCAP 1604, 001 (2016). arXiv:1512.06239
  140. 140.
    L. Leitao, A. Megevand, Gravitational waves from a very strong electroweak phase transition. JCAP 1605, 037 (2016). arXiv:1512.08962
  141. 141.
    L. Leitao, A. Megevand, A.D. Sanchez, Gravitational waves from the electroweak phase transition. JCAP 1210, 024 (2012). arXiv:1205.3070 ADSCrossRefGoogle Scholar
  142. 142.
    A. Kobakhidze, A. Manning, J. Yue, Gravitational waves from the phase transition of a non-linearly realised electroweak gauge symmetry. arXiv:1607.00883

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations