Advertisement

Probing \(\mathcal {CP}\)-violating Top-Yukawa Couplings at the LHC

  • Jason Tsz Shing YueEmail author
Chapter
  • 261 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Having established confidently that the spin of h(125) should be \(J=0\), the next focus is to pin down its \(\mathcal {CP}\)-properties. If this scalar resonance is a \(\mathcal {CP}\)-eigenstate, it may either be even (scalar) or odd (pseudoscalar).

Keywords

Scalar Resonance Parton Density Functions (PDF) Diphoton Narrow Width Approximation Yukawa Couplings 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Accomando et al., Workshop on CP studies and non-standard higgs physics. (2006). arXiv:hep-ph/0608079
  2. 2.
    A. Kobakhidze, L. Wu, J. Yue, Anomalous top-Higgs couplings and top polarisation in single top and Higgs associated production at the LHC. JHEP 10, 100 (2014). arXiv:1406.1961 ADSCrossRefGoogle Scholar
  3. 3.
    J. Yue, Enhanced \(thj\) signal at the LHC with \(h\rightarrow \gamma \gamma \) decay and \(\cal{CP}\)-violating top-Higgs coupling. Phys. Lett. B 744, 131–136 (2015). arXiv:1410.2701 ADSCrossRefGoogle Scholar
  4. 4.
    G. Aad et al., Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120–144 (2013). arXiv:1307.1432 ADSCrossRefGoogle Scholar
  5. 5.
    CMS collaboration, S. Chatrchyan et al., Measurement of the properties of a Higgs boson in the four-lepton final state. Phys. Rev. D 89, 092007 (2014). arXiv:1312.5353
  6. 6.
    CMS collaboration, S. Chatrchyan et al., Study of the mass and spin-parity of the Higgs boson candidate Via its decays to Z boson pairs. Phys. Rev. Lett. 110, 081803 (2013). arXiv:1212.6639
  7. 7.
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs. Phys. Lett. B 553, 61–71 (2003). arXiv:hep-ph/0210077 ADSCrossRefGoogle Scholar
  8. 8.
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396 ADSCrossRefGoogle Scholar
  9. 9.
    S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran et al., On the spin and parity of a single-produced resonance at the LHC. Phys. Rev. D 86, 095031 (2012). arXiv:1208.4018 ADSCrossRefGoogle Scholar
  10. 10.
    B. Coleppa, K. Kumar, H.E. Logan, Can the 126 GeV boson be a pseudoscalar? Phys. Rev. D 86, 075022 (2012). arXiv:1208.2692 ADSCrossRefGoogle Scholar
  11. 11.
    C. Englert, D. Goncalves-Netto, K. Mawatari, T. Plehn, Higgs quantum numbers in weak boson fusion. JHEP 01, 148 (2013). arXiv:1212.0843 ADSCrossRefGoogle Scholar
  12. 12.
    P. Artoisenet et al., A framework for Higgs characterisation. JHEP 11, 043 (2013). arXiv:1306.6464 Google Scholar
  13. 13.
    R. Harnik, A. Martin, T. Okui, R. Primulando, F. Yu, Measuring CP violation in \(h \rightarrow \tau ^+ \tau ^-\) at colliders. Phys. Rev. D 88, 076009 (2013). arXiv:1308.1094 ADSCrossRefGoogle Scholar
  14. 14.
    T. Appelquist, M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation. Phys. Rev. Lett. 59, 2405 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    M. Golden, Unitarity and fermion mass generation. Phys. Lett. B 338, 295–300 (1994). arXiv:hep-ph/9408272 ADSCrossRefGoogle Scholar
  16. 16.
    F. Maltoni, J.M. Niczyporuk, S. Willenbrock, The scale of fermion mass generation. Phys. Rev. D 65, 033004 (2002). arXiv:hep-ph/0106281 ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Dicus, H.-J. He, Scales of fermion mass generation and electroweak symmetry breaking. Phys. Rev. D 71, 093009 (2005). arXiv:hep-ph/0409131 ADSCrossRefGoogle Scholar
  18. 18.
    R.S. Chivukula, N.D. Christensen, B. Coleppa, E.H. Simmons, Unitarity and bounds on the scale of fermion mass generation. Phys. Rev. D 75, 073018 (2007). arXiv:hep-ph/0702281 ADSCrossRefGoogle Scholar
  19. 19.
    D. Choudhury, R. Islam, A. Kundu, Anomalous Higgs couplings as a window to new physics. Phys. Rev. D 88, 013014 (2013). arXiv:1212.4652 ADSCrossRefGoogle Scholar
  20. 20.
    D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio et al., Investigating the near-criticality of the Higgs boson. JHEP 12, 089 (2013). arXiv:1307.3536 ADSCrossRefGoogle Scholar
  21. 21.
    A. Spencer-Smith, Higgs vacuum stability in a mass-dependent renormalisation scheme. arXiv:1405.1975
  22. 22.
    F. Bishara, Y. Grossman, R. Harnik, D.J. Robinson, J. Shu, J. Zupan, Probing CP violation in \(h\rightarrow \gamma \gamma \) with converted photons. JHEP 04, 084 (2014). arXiv:1312.2955 ADSCrossRefGoogle Scholar
  23. 23.
    F. Bishara, Prospecting for new physics in the Higgs and flavor sectors. PhD thesis, Cincinnati U., 2015Google Scholar
  24. 24.
    A. Alves, Is the new resonance spin 0 or 2? Taking a step forward in the Higgs boson discovery. Phys. Rev. D 86, 113010 (2012). arXiv:1209.1037 ADSCrossRefGoogle Scholar
  25. 25.
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks. Nucl. Phys. B 247, 339–359 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    E. Richter-Was, M. Sapinski, Search for the SM and MSSM Higgs boson in the t anti-t H, H \(\rightarrow \) b anti-b channel. Acta Phys. Polon. B 30, 1001–1040 (1999)ADSGoogle Scholar
  27. 27.
    A. Belyaev, L. Reina, \(pp \rightarrow t \overline{t}H\), \(H\rightarrow \tau ^+\tau ^-\): toward a model independent determination of the Higgs boson couplings at the LHC. JHEP 08, 041 (2002). arXiv:hep-ph/0205270 ADSCrossRefGoogle Scholar
  28. 28.
    F. Maltoni, D.L. Rainwater, S. Willenbrock, Measuring the top quark Yukawa coupling at hadron colliders via \(t\bar{t}H, H\rightarrow W^+W^-\). Phys. Rev. D 66, 034022 (2002). arXiv:hep-ph/0202205 ADSCrossRefGoogle Scholar
  29. 29.
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, M. Duhrssen, Measuring the Higgs sector. JHEP 08, 009 (2009). arXiv:0904.3866 Google Scholar
  30. 30.
    S. Biswas, R. Frederix, E. Gabrielli, B. Mele, Enhancing the \(t\bar{t}H\) signal through top-quark spin polarization effects at the LHC. JHEP 07, 020 (2014). arXiv:1403.1790 ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Gunion, X.-G. He, Determining the CP nature of a neutral Higgs boson at the LHC. Phys. Rev. Lett. 76, 4468–4471 (1996). arXiv:hep-ph/9602226 ADSCrossRefGoogle Scholar
  32. 32.
    J.F. Gunion, J. Pliszka, Determining the relative size of the CP even and CP odd Higgs boson couplings to a fermion at the LHC. Phys. Lett. B 444, 136–141 (1998). arXiv:hep-ph/9809306 ADSCrossRefGoogle Scholar
  33. 33.
    W. Bernreuther, A. Brandenburg, M. Flesch, Effects of Higgs sector CP violation in top quark pair production at the LHC. arXiv:hep-ph/9812387
  34. 34.
    T. Han, Y. Li, Genuine CP-odd observables at the LHC. Phys. Lett. B 683, 278–281 (2010). arXiv:0911.2933 ADSCrossRefGoogle Scholar
  35. 35.
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau, P. Torrielli, Scalar and pseudoscalar Higgs production in association with a topĐantitop pair. Phys. Lett. B 701, 427–433 (2011). arXiv:1104.5613 ADSCrossRefGoogle Scholar
  36. 36.
    J. Ellis, D.S. Hwang, K. Sakurai, M. Takeuchi, Disentangling Higgs-top couplings in associated production. JHEP 04, 004 (2014). arXiv:1312.5736 ADSCrossRefGoogle Scholar
  37. 37.
    F. Demartin, F. Maltoni, K. Mawatari, B. Page, M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction. Eur. Phys. J. C 74, 3065 (2014). arXiv:1407.5089 ADSCrossRefGoogle Scholar
  38. 38.
    S. Khatibi, M.M. Najafabadi, Exploring the anomalous Higgs-top couplings. Phys. Rev. D 90, 074014 (2014). arXiv:1409.6553 ADSCrossRefGoogle Scholar
  39. 39.
    ATLAS collaboration, G. Aad et al., Search for \(H \rightarrow \gamma \gamma \) produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector. Phys. Lett. B 740, 222–242 (2015). arXiv:1409.3122
  40. 40.
    CMS collaboration, C. Collaboration, Search for ttH production using the matrix element methodGoogle Scholar
  41. 41.
    B.C. Allanach et al., Les Houches physics at TeV colliders 2005 beyond the standard model working group: summary report, in physics at TeV colliders, in Proceedings, Workshop, Les Houches (France, 2006), 2–20 May 2005. arXiv:hep-ph/0602198
  42. 42.
    R.M. Godbole, S.D. Rindani, R.K. Singh, Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization. JHEP 12, 021 (2006). arXiv:hep-ph/0605100 ADSCrossRefGoogle Scholar
  43. 43.
    J. Shelton, Polarized tops from new physics: signals and observables. Phys. Rev. D 79, 014032 (2009). arXiv:0811.0569 ADSCrossRefGoogle Scholar
  44. 44.
    R.M. Godbole, S.D. Rindani, K. Rao, R.K. Singh, Top polarization as a probe of new physics. AIP Conf. Proc. 1200, 682–685 (2010). arXiv:0911.3622 ADSCrossRefGoogle Scholar
  45. 45.
    D. Krohn, J. Shelton, L.-T. Wang, Measuring the polarization of boosted hadronic tops. JHEP 07, 041 (2010). arXiv:0909.3855 ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    R.M. Godbole, K. Rao, S.D. Rindani, R.K. Singh, On measurement of top polarization as a probe of \(t \bar{t}\) production mechanisms at the LHC. JHEP 11, 144 (2010). arXiv:1010.1458 ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    A. Falkowski, G. Perez, M. Schmaltz, Spinning the top quark. Phys. Rev. D 87, 034041 (2013). arXiv:1110.3796 ADSCrossRefGoogle Scholar
  48. 48.
    G. Mahlon, S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders. Phys. Rev. D 53, 4886–4896 (1996). arXiv:hep-ph/9512264 ADSCrossRefGoogle Scholar
  49. 49.
    G. Mahlon, S.J. Parke, Improved spin basis for angular correlation studies in single top quark production at the Tevatron. Phys. Rev. D 55, 7249–7254 (1997). arXiv:hep-ph/9611367 ADSCrossRefGoogle Scholar
  50. 50.
    G. Mahlon, S.J. Parke, Single top quark production at the LHC: understanding spin. Phys. Lett. B 476, 323–330 (2000). arXiv:hep-ph/9912458 ADSCrossRefGoogle Scholar
  51. 51.
    G. Mahlon, S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron. Phys. Lett. B 411, 173–179 (1997). arXiv:hep-ph/9706304 ADSCrossRefGoogle Scholar
  52. 52.
    G. Mahlon, Spin issues in t anti-t production and decay, in Thinkshop on Top Quark Physics for Run II Batavia Illinois, 16-18 October 1998. arXiv:hep-ph/9811281
  53. 53.
    G. Mahlon, Spin correlations: Tevatron versus LHC. Nuovo Cim. C 033, 237–244 (2010). arXiv:1007.1716 Google Scholar
  54. 54.
    G. Mahlon, S.J. Parke, Spin correlation effects in top quark pair production at the LHC. Phys. Rev. D 81, 074024 (2010). arXiv:1001.3422 ADSCrossRefGoogle Scholar
  55. 55.
    P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner, S.D. Rindani, Determining the CP properties of the Higgs boson. Phys. Rev. Lett. 100, 051801 (2008). arXiv:0707.2878 ADSCrossRefGoogle Scholar
  56. 56.
    R.M. Godbole, S. Kraml, S.D. Rindani, R.K. Singh, Probing CP-violating Higgs contributions in \(\gamma \gamma \rightarrow f\overline{f}\) through fermion polarization. Phys. Rev. D 74, 095006 (2006). arXiv:hep-ph/0609113 ADSCrossRefGoogle Scholar
  57. 57.
    W. Bernreuther, M. Flesch, P. Haberl, Signatures of Higgs bosons in the top quark decay channel at hadron colliders. Phys. Rev. D 58, 114031 (1998). arXiv:hep-ph/9709284 ADSCrossRefGoogle Scholar
  58. 58.
    C. Englert, E. Re, Bounding the top Yukawa coupling with Higgs-associated single-top production. Phys. Rev. D 89, 073020 (2014). arXiv:1402.0445 ADSCrossRefGoogle Scholar
  59. 59.
    AYu. Korchin, V.A. Kovalchuk, Angular distribution and forwardĐbackward asymmetry of the Higgs-boson decay to photon and lepton pair. Eur. Phys. J. C 74, 3141 (2014). arXiv:1408.0342
  60. 60.
    M. Beneke et al., Top quark physics, in Proceedings of the 1999 CERN Workshop on standard model physics (and more) at the LHC, CERN, Geneva, Switzerland, 25–26 May 2000. arXiv:hep-ph/0003033
  61. 61.
    J.A. Aguilar-Saavedra, S.A. dos Santos, New directions for top quark polarization in the \(t\)-channel process. Phys. Rev. D 89, 114009 (2014). arXiv:1404.1585 ADSCrossRefGoogle Scholar
  62. 62.
    J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings. Nucl. Phys. B 804, 160–192 (2008). arXiv:0803.3810 ADSCrossRefGoogle Scholar
  63. 63.
    J.A. Aguilar-Saavedra, J. Bernabeu, W polarisation beyond helicity fractions in top quark decays. Nucl. Phys. B 840, 349–378 (2010). arXiv:1005.5382 ADSzbMATHCrossRefGoogle Scholar
  64. 64.
    A. Prasath, V, R.M. Godbole, S.D. Rindani, Longitudinal top polarisation measurement and anomalous \(Wtb\) coupling. Eur. Phys. J. C 75, 402 (2015). arXiv:1405.1264
  65. 65.
    S.F. Taghavi, M.M. Najafabadi, Angular correlations in associated production of single top and Higgs with and without anomalous \(Wtb\) couplings. Int. J. Theor. Phys. 53, 4326–4337 (2014). arXiv:1301.3073 CrossRefGoogle Scholar
  66. 66.
    R.M. Godbole, L. Hartgring, I. Niessen, C.D. White, Top polarisation studies in \(H^-t\) and \(Wt\) production. JHEP 01, 011 (2012). arXiv:1111.0759 ADSCrossRefGoogle Scholar
  67. 67.
    S.D. Rindani, P. Sharma, CP violation in tbW couplings at the LHC. Phys. Lett. B 712, 413–418 (2012). arXiv:1108.4165 ADSCrossRefGoogle Scholar
  68. 68.
    S.D. Rindani, P. Sharma, Probing anomalous tbW couplings in single-top production using top polarization at the large hadron collider. JHEP 11, 082 (2011). arXiv:1107.2597 ADSzbMATHCrossRefGoogle Scholar
  69. 69.
    K. Huitu, S. Kumar Rai, K. Rao, S.D. Rindani, P. Sharma, Probing top charged-Higgs production using top polarization at the large hadron collider. JHEP 04, 026 (2011). arXiv:1012.0527 ADSCrossRefGoogle Scholar
  70. 70.
    M. Arai, K. Huitu, S.K. Rai, K. Rao, Single production of sleptons with polarized tops at the large hadron collider. JHEP 08, 082 (2010). arXiv:1003.4708 ADSzbMATHCrossRefGoogle Scholar
  71. 71.
    J.A. Aguilar-Saavedra, A minimal set of top-Higgs anomalous couplings. Nucl. Phys. B 821, 215–227 (2009). arXiv:0904.2387 ADSzbMATHCrossRefGoogle Scholar
  72. 72.
    J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings. Nucl. Phys. B 812, 181–204 (2009). arXiv:0811.3842 ADSzbMATHCrossRefGoogle Scholar
  73. 73.
    C. Zhang, N. Greiner, S. Willenbrock, Constraints on non-standard top quark couplings. Phys. Rev. D 86, 014024 (2012). arXiv:1201.6670 ADSCrossRefGoogle Scholar
  74. 74.
    H. Belusca-Maito, Effective Higgs lagrangian and constraints on Higgs couplings. arXiv:1404.5343
  75. 75.
    X.-G. He, Y. Tang, G. Valencia, Interplay between new physics in one-loop Higgs couplings and the top-quark Yukawa coupling. Phys. Rev. D 88, 033005 (2013). arXiv:1305.5420 ADSCrossRefGoogle Scholar
  76. 76.
    F.P. Huang, P.-H. Gu, P.-F. Yin, Z.-H. Yu, X. Zhang, Testing the electroweak phase transition and electroweak baryogenesis at the LHC and a circular electron-positron collider. Phys. Rev. D 93, 103515 (2016). arXiv:1511.03969
  77. 77.
    T. Plehn, Lectures on LHC physics. Lect. Notes Phys. 844, 1–193 (2012). arXiv:0910.4182 zbMATHCrossRefGoogle Scholar
  78. 78.
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, A phenomenological profile of the Higgs boson. Nucl. Phys. B 106, 292 (1976)ADSCrossRefGoogle Scholar
  79. 79.
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons. Sov. J. Nucl. Phys. 30, 711–716 (1979)Google Scholar
  80. 80.
    S. Dawson, H.E. Haber, A Primer on Higgs Boson Low-Energy Theorems, in Workshop on High-energy Physics Phenomenology (WHEPP) Bombay, India, 2–15 January 1989Google Scholar
  81. 81.
    B.A. Kniehl, M. Spira, Low-energy theorems in Higgs physics. Z. Phys. C 69, 77–88 (1995). arXiv:hep-ph/9505225 Google Scholar
  82. 82.
    M. Carena, I. Low, C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width. JHEP 08, 060 (2012). arXiv:1206.1082 ADSCrossRefGoogle Scholar
  83. 83.
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner, E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models. JHEP 10, 004 (2012). arXiv:1206.7120 ADSCrossRefGoogle Scholar
  84. 84.
    B. Grzadkowski, J. Pawelczyk, Light elementary pseudoscalars within the framework of effective Lagrangians. Phys. Lett. B 300, 387–392 (1993)ADSCrossRefGoogle Scholar
  85. 85.
    J.S. Bell, R. Jackiw, A PCAC puzzle: \(\pi ^0 \rightarrow \gamma \gamma \) in the sigma model. Nuovo Cim. A 60, 47–61 (1969)ADSCrossRefGoogle Scholar
  86. 86.
    S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)ADSCrossRefGoogle Scholar
  87. 87.
    S.L. Adler, W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182, 1517–1536 (1969)ADSCrossRefGoogle Scholar
  88. 88.
    D.G. Sutherland, Current algebra and some nonstrong mesonic decays. Nucl. Phys. B 2, 433–440 (1967)ADSCrossRefGoogle Scholar
  89. 89.
    LHC Higgs Cross Section Working Group collaboration, A. David, A. Denner, M. Duehrssen, M. Grazzini, C. Grojean, G. Passarino et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle. arXiv:1209.0040
  90. 90.
    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties. arXiv:1307.1347
  91. 91.
    F. Boudjema, R.M. Godbole, D. Guadagnoli, K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction. Phys. Rev. D 92, 015019 (2015). arXiv:1501.03157
  92. 92.
    A. Djouadi, V. Driesen, W. Hollik, A. Kraft, The Higgs photon-Z boson coupling revisited. Eur. Phys. J. C 1, 163–175 (1998). arXiv:hep-ph/9701342 ADSCrossRefGoogle Scholar
  93. 93.
    J.S. Lee, A. Pilaftsis, M. Carena, S.Y. Choi, M. Drees, J.R. Ellis et al., CPsuperH: A Computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP violation. Comput. Phys. Commun. 156, 283–317 (2004). arXiv:hep-ph/0307377 ADSCrossRefGoogle Scholar
  94. 94.
    K. Cheung, J.S. Lee, P.-Y. Tseng, Higgs precision (Higgcision) Era begins. JHEP 05, 134 (2013). arXiv:1302.3794 ADSCrossRefGoogle Scholar
  95. 95.
    J. Bernon, B. Dumont, Lilith: a tool for constraining new physics from Higgs measurements. Eur. Phys. J. C 75, 440 (2015). arXiv:1502.04138
  96. 96.
    S.M. Barr, A. Zee, Electric dipole moment of the electron and of the neutron. Phys. Rev. Lett. 65, 21–24 (1990)ADSCrossRefGoogle Scholar
  97. 97.
    J. Brod, U. Haisch, J. Zupan, Constraints on CP-violating Higgs couplings to the third generation. JHEP 11, 180 (2013). arXiv:1310.1385 ADSCrossRefGoogle Scholar
  98. 98.
    D. Chang, Mechanisms of CP violation in gauge theory and the recent developments, in In *Mt. Sorak 1990, Proceedings, The standard model and beyond* 158-239 and Fermilab Batavia - FERMILAB-Conf-90-265 (90/12,rec.Jan.91) 81 p. (101694) Northwest. Univ. Evanston—NUHEP-TH-90-38 (90/12,rec.Jan.91) 81 p., 1990Google Scholar
  99. 99.
    L. Bian, T. Liu, J. Shu, Post-ACME2013 CP-violation in Higgs physics and electroweak baryogenesis. arXiv:1411.6695
  100. 100.
    X. Zhang, S.K. Lee, K. Whisnant, B.L. Young, Phenomenology of a nonstandard top quark Yukawa coupling. Phys. Rev. D 50, 7042–7047 (1994). arXiv:hep-ph/9407259 ADSCrossRefGoogle Scholar
  101. 101.
    C.-Y. Chen, S. Dawson, Y. Zhang, Complementarity of LHC and EDMs for exploring Higgs CP violation. JHEP 06, 056 (2015). arXiv:1503.01114
  102. 102.
    S.J. Huber, M. Pospelov, A. Ritz, Electric dipole moment constraints on minimal electroweak baryogenesis. Phys. Rev. D 75, 036006 (2007). arXiv:hep-ph/0610003 ADSCrossRefGoogle Scholar
  103. 103.
    K. Cheung, J.S. Lee, E. Senaha, P.-Y. Tseng, Confronting Higgcision with electric dipole moments. JHEP 06, 149 (2014). arXiv:1403.4775 ADSCrossRefGoogle Scholar
  104. 104.
    C. Lee, Baryogenesis and EDMs: constraining CP violation beyond the standard model. J. Phys. Conf. Ser. 69, 012036 (2007)CrossRefGoogle Scholar
  105. 105.
    Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions. JHEP 02, 011, (2016). arXiv:1510.00725
  106. 106.
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014). arXiv:1310.7534
  107. 107.
    D. Espriu, J. Manzano, Measuring effective electroweak couplings in single top production at the LHC. Phys. Rev. D 65, 073005 (2002). arXiv:hep-ph/0107112 ADSCrossRefGoogle Scholar
  108. 108.
    D. Espriu, J. Manzano, A study of top polarization in single top production at the CERN LHC. Phys. Rev. D 66, 114009 (2002). arXiv:hep-ph/0209030 ADSCrossRefGoogle Scholar
  109. 109.
    P. Motylinski, Angular correlations in t-channel single top production at the LHC. Phys. Rev. D 80, 074015 (2009). arXiv:0905.4754 ADSCrossRefGoogle Scholar
  110. 110.
    ATLAS collaboration, G. Aad et al., Search for anomalous couplings in the \(Wtb\) vertex from the measurement of double differential angular decay rates of single top quarks produced in the \(t\)-channel with the ATLAS detector, JHEP 04, 023 (2016). arXiv:1510.03764
  111. 111.
    CMS collaboration, V. Khachatryan et al., Measurement of top quark polarisation in t-channel single top quark production. JHEP 04, 073 (2016). arXiv:1511.02138
  112. 112.
    T. Nasuno, Spin correlations in top quark production at \(e^+ e^-\) linear colliders. PhD thesis, Hiroshima U., 1999. arXiv:hep-ph/9906252
  113. 113.
    M. Jezabek, J.H. Kuhn, V-A tests through leptons from polarized top quarks. Phys. Lett. B 329, 317–324 (1994). arXiv:hep-ph/9403366 ADSCrossRefGoogle Scholar
  114. 114.
    J.H. Kuhn, How to measure the polarization of top quarks. Nucl. Phys. B 237, 77–85 (1984)ADSCrossRefGoogle Scholar
  115. 115.
    R.H. Dalitz, G.R. Goldstein, The decay and polarization properties of the top quark. Phys. Rev. D 45, 1531–1543 (1992)ADSCrossRefGoogle Scholar
  116. 116.
    T.M.P. Tait, C.P. Yuan, Single top quark production as a window to physics beyond the standard model. Phys. Rev. D 63, 014018 (2000). arXiv:hep-ph/0007298 ADSCrossRefGoogle Scholar
  117. 117.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. JHEP 04, 081 (2007). arXiv:hep-ph/0702198 ADSCrossRefGoogle Scholar
  118. 118.
    V. del Duca, E. Laenen, Top physics at the LHC. Int. J. Mod. Phys. A 30, 1530063 (2015). arXiv:1510.06690
  119. 119.
    D. Eriksson, G. Ingelman, J. Rathsman, O. Stal, New angles on top quark decay to a charged Higgs. JHEP 01, 024 (2008). arXiv:0710.5906 ADSCrossRefGoogle Scholar
  120. 120.
    C. Bouchiat, L. Michel, Mesure de la polarisation des electrons relativistes. Nucl. Phys. 5, 416 (1958)zbMATHCrossRefGoogle Scholar
  121. 121.
    H.E. Haber, Spin formalism and applications to new physics searches, in Spin structure in high-energy processes: Proceedings, 21st SLAC Summer Institute on Particle Physics (Stanford, CA, 1994) 26 Jul–6 Aug 1993. arXiv:hep-ph/9405376
  122. 122.
    G. Mahlon, Spin polarization in single top events, in Thinkshop on Top Quark Physics for Run II Batavia, Illinois, 16–18 October 1998. arXiv:hep-ph/9811219
  123. 123.
    J.A.M. Vermaseren, New features of FORM. arXiv:math-ph/0010025
  124. 124.
    H. Murayama, I. Watanabe, K. Hagiwara, K. enerugi Butsurigaku Kenkyujo (Japan), HELAS: HELicity amplitude subroutines for feynman diagram evaluations / H. Murayama, I. Watanabe and K. Hagiwara. National Laboratory for High Physics Ibaraki-ken, Japan, 1992Google Scholar
  125. 125.
    J. Kuczmarski, SpinorsExtras—Mathematica implementation of massive spinor-helicity formalism. (2014). arXiv:1406.5612
  126. 126.
    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301 ADSCrossRefGoogle Scholar
  127. 127.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)ADSCrossRefGoogle Scholar
  128. 128.
    H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)ADSCrossRefGoogle Scholar
  129. 129.
    R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)ADSCrossRefGoogle Scholar
  130. 130.
    J.C. Collins, D.E. Soper, The theorems of perturbative QCD. Ann. Rev. Nucl. Part. Sci. 37, 383–409 (1987)ADSCrossRefGoogle Scholar
  131. 131.
    J.M. Campbell, J.W. Huston, W.J. Stirling, Hard interactions of quarks and gluons: A primer for LHC physics. Rept. Prog. Phys. 70, 89 (2007). arXiv:hep-ph/0611148 ADSCrossRefGoogle Scholar
  132. 132.
    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu, Probing the top-Yukawa coupling in associated Higgs production with a single top quark. JHEP 05, 062 (2014). arXiv:1403.2053 ADSCrossRefGoogle Scholar
  133. 133.
    T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012 ADSzbMATHCrossRefGoogle Scholar
  134. 134.
    DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057. arXiv:1307.6346
  135. 135.
    M. Cacciari, G.P. Salam, G. Soyez, The Anti-\(k_t\) jet clustering algorithm. JHEP 04, 063 (2008). arXiv:0802.1189 ADSzbMATHCrossRefGoogle Scholar
  136. 136.
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni, A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson. JHEP 05, 022 (2013). arXiv:1211.3736 ADSGoogle Scholar
  137. 137.
    L. Wu, Enhancing \(thj\) production from top-Higgs FCNC couplings. JHEP 02, 061 (2015). arXiv:1407.6113 ADSCrossRefGoogle Scholar
  138. 138.
    A. Kobakhidze, L. Wu, J. Yue, Electroweak baryogenesis with anomalous Higgs couplings. JHEP 04, 011 (2016). arXiv:1512.08922

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations